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Five model flows of increasing complexity belonging to the class of stationary
two-dimensional planar field-aligned magnetohydrodynamic (MHD) flows are pre-
sented which are well suited to the quantitative evaluation of MHD codes. The
physical properties of these five flows are investigated using characteristic theory.
Grid convergence criteria for flows belonging to this class are derived from charac-
teristic theory, and grid convergence is demonstrated for the numerical simulation
of the five model flows with a standard high-resolution finite volume numerical
MHD code on structured body-fitted grids. In addition, one model flow is presented
which is not field-aligned, and it is discussed how grid convergence can be studied
for this flow. By formal grid convergence studies of magnetic flux conservation and
other flow quantities, it is investigated whether the Powell source term approach to
controlling theV - B constraint leads to correct results for the class of flows under
consideration. @ 2001 Academic Press
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1. INTRODUCTION

In the past decade there have been many new and interesting developments in the fie
numerical methods for the simulation of non-linear magnetohydrodynamic (MHD) flov
with shocks[1, 4,5, 8,12-14,17, 31, 34, 36, 39-41, 49, 50, 54, 55, 58]. These developm
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have been driven by the increased need for robust and accurate simulation methods to t
problems in astrophysics [29] and laboratory plasma physics [6].

Standard techniques from computational fluid dynamics (CFD) have been adaptec
MHD applications. High-resolution finite-volume Godunov schemes with Riemann solve
on structured grids have been developed [1, 4, 8, 12-14, 17, 31, 34, 36, 3941, 49, 50
58] and have been shown to perform well in a wide range of applications (e.g., [21, 29,
45, 48]). More recently, unstructured grid codes have been presented as well [5, 11, 5:

1.1. Quantitative Measures of Numerical Accuracy

Thorough testing of new numerical schemes is an essential part of the developn
process. Most articles on new algorithmic techniques include some kind of validation
terms of model problems. However, a vast majority of the model problems presented in
MHD literature only allow very qualitative comparison and validation. Conclusions on t
validity and accuracy of numerical approaches are often based solely on visual compar
of contour plots. It may be useful to determine if various numerical schemes can “captu
all the different MHD wave features properly. A new two-dimensional (2D) test proble
which seems to be appropriate for this kind of comparison because it involves interac
fast and intermediate shocks and tangential discontinuities has recently been describe
De Stercket al [45]. It is clear, however, that more quantitative measures are desirable
establish more basic formal proofs of accuracy of a numerical code, for example in tel
of convergence with a certain order towards the (analytical) exact solution as a functiol
grid resolution grid convergencef the spatial discretization). The lack of model problems
that allow for such an accuracy study is often attributed to the unavailability of analytic
solutions to the MHD equations, especially in two or three space dimensions.

The aim of the present paper is to contribute to a remedy for the lack of model proble
which allow formal study of the basic accuracy of MHD codes. We provide a set of fiy
stationary planarB, = 0 andv, = 0) 2D field-aligned ¥||B) transonic MHD model flows
which allow to study grid convergence of numerical codes. Additionally we present o
model problem which is not field-aligned. We will show grid convergence for the numeric
simulation of these flows with atandardhigh-resolution finite-volume numerical MHD
code on structured body-fitted grids. Except for one of the five presented field-aligr
problems, the full analytical solution is not known, but we show that grid convergence stuc
can be based on invariant properties following from the rigorously derived characteris
theory [10, 24, 46] of planar stationary field-aligned MHD flow. Characteristic analys
reveals basic invariants of the flow, and these invariants can be used to test grid converg
as they lead to analytical solutions for some combinations of the flow variables if t
incoming flow is uniform. Characteristic analysis also provides clear insight into the physi
properties of the model flows and into the stationary wave features present in the flc
We present five field-aligned model flows, with increasing complexity in terms of way
features present in the flow: a fully smooth radial outflow, an expanding tube flow witt
weak discontinuity, a wedge flow with a plane fast shock, a bow shock flow with a curv
fast shock, and a nozzle flow with reflecting fast shocks. These model flows describe var
nonlinear wave phenomena in their most basic form. The corresponding Euler flows h
been described and used many times, but in the numerical MHD literature these basic f
have not received much attention. We will show that this set of model problems is w
suited to testing grid convergence of MHD codes and to studying in detail how the beha
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of numerical schemes changes when increasingly complex wave structures are prese
the flow. Although these five model problems exhibit quite a variety of flow features, th
all belong to the sub-class of stationary planar 2D field-aligned MHD flows. Stationary flc
has important applications [19-21, 30, 32, 45, 51] and we show [46] that any stationary
problem where ideal conducting wall boundary conditions are present automatically le
to a solution where the magnetic field is aligned to the velocity field in the whole simulatic
domain. Hence the class of stationary field-aligned flow is an important class of MHD flov
One could even argue that 2D stationary flow problems in a finite domain with the magne
field notaligned to the plasma flow are rare [19, 23, 30]. It is hard to define the boundz
conditions consistently in that case. However, it is important to test MHD codes also
non-field-aligned flow. Therefore we include one model problem for which the magne
field is not aligned to the plasma flow. This model flow is constructed in a special way; t
fields are actually aligned in a rotating frame, but not in the rest frame. The analysis of t
model problem is substantially different from the analysis of the field-aligned problems
would certainly be useful to develop more general test problems allowing grid converge
studies, which, for instance, would also investigate the accuracy of time integration, bu
this paper we take a first step and restrict ourselves to model problems belonging to
important sub-class of stationary planar flows in 2D.

Although most model problems presented in the MHD literature only allow qualitativ
comparison and cannot be used for formal accuracy testing, a very limited number of (mo
one-dimensional (1D)) test problems which allow some degree of formal accuracy test
have been described. Stagteal. [49, 50] present 1D model problems including stellar wind
flows and obtain grid convergence which is satisfactory for most casetRy(41] show
that the numerical dissipation of their scheme vanishes in second order as a function of
resolution. Vanden Abeele and Deconinck [1] show how the conservation of magnetic f
in a flux tube can be used as a measure of improved accuracy as a function of grid resolu
Barth [5] obtains optimal grid convergence for f¥ie B constraint in a continuous Prandtl—
Meyer flow with added magnetic field. The most interesting approach to grid converger
studies of MHD codes to date can probably be found in Linde’s Ph.D. thesis [31, 3
This author describes briefly a wedge flow and a stellar wind flow and obtains satisfact
grid convergence. Although we have made use of some of the ideas presented in the a
listed earlier articles, the variety of problems presented in this paper and especially the
grounding of convergence study on the rigorous and complete characteristic analysis o
model flows are new compared to these earlier approaches to grid convergence stuc
MHD codes.

1.2. Strategies for Preservation of the- B = 0 Condition

The numerical enforcement of thé- B constraint is an important and much debated
problem for numerical MHD codes. THeé - B condition is an initial condition, which is
exactly preserved in time by the partial differential equations (PDEs) of MHD, but whic
is not always exactly preserved after discretization of the equations (see, e.qg., [36]) wt
may lead to numerical instability. Various strategies have been proposed to deal with
V - B constraint. We do not intend to give a full discussion of this subtle subject here, t
we find it useful to give a brief overview of the various approaches to this problem. T
equations can be formulated in terms of a vector potential, which implies divergence-f
magnetic fields. This approach is not always very practical and leads to difficulties n
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sharp gradients because of the presence of second-order derivatives in the equations
e.g., [50]). Staggered grid approaches store different state variables on different posit
of the grid, in such a way that the discrete time evolution of the magnetic field autom:
cally conserves the divergence-free condition (e.g., [3, 14-16, 50, 55]). They often reqL
however, extra interpolations to be performed, and the interpolated magnetic field is
necessarily divergence-free. Subtle approaches which are intended to overcome these
polation problems have been proposed recently [3, 14, 55]. Projection scheme approa
solve an elliptic equation in every time-step and add a computed correction to the magr
fields to achieve divergence-free fields [7, 41, 55, 58]. Solution of the elliptic equation m
take considerable computing time, and spurious oscillations can also be generated in s|
sonic regions that should not be affected because theoretically they cannot be reache
wave perturbations in the hyperbolic system. Recently a new approach has been prest
by Powellet al. [36]. These authors propose to add a source term proportiohal Bto
the conservative form of the MHD equations. Discretization of this Galilean-invariant sy!
metrizable form of the equations with a source term [5, 18, 36] leads to a stable numer
scheme. Th& - B constraint is not enforced strongly aWd B can sometimes be substan-
tially different from zero, but because of the presence of the source terms the dynam
effect of theV - B errors is largely neutralized and- B errors can be shown to be advected
away with the plasma flow. Although this approach seems to work well [5, 11, 31, 32, :
38, 44, 46, 55] and has several conceptual advantages over other techniques because
simplicity and consistency with the hyperbolic nature of the MHD equations, not much c
be found in the literature about rigorous validation of this approach, and consequentl
is still heavily debated. In this paper we employ the Powell source term technique and
investigate by formal grid convergence studies of magnetic flux conservation and other f
quantities whether this approach is valid, at least for the class of stationary flow proble
that we consider. Linde [31] and Barth [5] carry out a similar study and confirm the validi
of the Powell source term approach, but their investigation is less complete and systen
than ours and is carried out on adaptively refined Cartesian grids [31] or on unstructu
grids [5], and not on the body-fitted structured grids discussed in this paper. It may be
for some problems, for which the conservation of magnetic flux up to very high accuracy
crucial, the source term technique would turn out to be insufficient. Recently Toth [55] t
given an example of a time-dependent strong Riemann problem flow for which the soL
term approach does not seem to work satisfactorily.

1.3. Philosophy and Organization of the Paper

The analysis of MHD model flows in terms of stationary characteristics and the disc
sion of grid convergence methodology and results are the main topics treated in the pre
forum. We choose to make the paper self-contained and easily accessible by including |
reviews of the characteristic theory of stationary MHD and of the numerical technique
use for the simulations. We want to state clearly from the beginning that it is the philosoy
of this paper to illustrate how grid convergence on the whole simulation domain—includi
boundaries—can be proved for numerical simulations obtained with a sistqhelard and
general-purpose numerical scheme, with standard boundary conditions, limiting, interp
tion, and time integration, with near-uniform grids, and with a simple and robust numeri
flux function. This is an important first step and sets an initial standard of grid converger
and accuracy. Using the same criteria, it is then possible to evaluate more advanced nu
ical schemes in a quantitative way. In Csikal [11] some of the model flows and grid
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convergence criteria presented in this paper are used to evaluate a new residual distrib
MHD scheme on triangular grids.

This paper is organized as follows. In Section 2 we briefly describe the MHD equatic
and the properties of MHD shocks. We present a compact derivation of the characteri
properties of stationary 2D planar field-aligned MHD flow. Our derivation of the characte
istic properties is based on the Galilean-invariant symmetrizable form of the conserva
MHD equations with a source term [5, 18, 36] and using a matrix approach. In Sectiol
we discuss the five stationary 2D planar field-aligned transonic model flows of increas
complexity. We discuss the flow features present in each flow in terms of stationary ct
acteristics. A non-field-aligned model problem is discussed in Section 4. In Section 5
give a brief but complete discussion of $tandarchigh-resolution finite-volume numerical
MHD scheme on structured body-fitted grids. Next we formulate practical grid converger
criteria based on the invariants revealed by the characteristic analysis. In Section 6 we
cuss the grid convergence results for simulation of the model flows and their implication
the validity of the Powell source term approach. We formulate our conclusions in Sectior

2. THE MHD EQUATIONS, MHD DISCONTINUITIES, AND THE THEORY
OF STATIONARY CHARACTERISTICS

2.1. The MHD Equations

The equations of ideal one-fluid MHD in conservative form [36] are given by

0 pv 0
3 . _
D lpv| g | PWHI(P+BB/D-BB | _ | B |y o )
ot | B Bv— VB v

e (e+p+B-B/2v—(v-B)B LAl

This equation has to be supplemented with the divergence-free condliti@= 0 as an
initial condition. Here, o and p are the plasma density and pressure, respectivétythe
plasma velocityB is the magnetic field, and

p v-v B-B

to—+—F (2

e= ——
y—1 2 2

is the total energy density of the plasnias the unity matrix. The magnetic permeability
w = 1in our units. We taker = 5/3 for the adiabatic index. These equations describe th
conservation of mass, momentum, magnetic field, and energy. For simplicity, we consi
a perfect gas, such that the sound speed is given by

c=\/vp/p, 3

and the entropy is given by
s=p/p’. (4)
The hydrodynamic stagnation enthalpy is defined as

__ v p_ 1,
ho= T4 5 5)

and plays a role in the characteristic analysis of field-aligned MHD flow.
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We have written Eqg. (1) in a form with a source term proportionaVtoB on the
right hand side (RHS). This form of the equations, which reduces to the more famil
physical conservation laws when we $ét B = 0, can be useful for certain purposes.
Godunov [5, 18] proved in 1972 that this is the unique form of the MHD equations whi
is symmetrizable whetV - B is non-vanishing. It is a more general form of the MHD
equations, in the sense that this form of the equations remains Galilean-invariant als
V - B # 0[36]. Discretization of this form of the equations is one way to controMhd3
constraint in conservative, shock-capturing numerical schemes [36].

The inclusion of this RHS term is also essential for the derivation of the characteris
theory of stationary 2D MHD in a simple, compact, and systematic procedure usin
matrix approach, as is described in [46], and in Section 2.3 for the special case of ple
field-aligned flow.

2.2. Discontinuities and Rankine—Hugoniot Relations

Contrary to the hydrodynamic equations, which allow for only one wave mode, t
MHD equations allow for three distinct wave modes, the fast magneto-acoustic wave,
Alfv’en wave, and the slow magneto-acoustic wave, with (positive) anisotropic wave spe
satisfyingcs > ca > Csin standard notation. The ideal MHD equations allow for discontin
uous solutions, and those discontinuities have to satisfy the MHD Rankine—Hugoniot (F
relations [27], which in the shock frame read

FU) = FU), (6)

with U; andU, the left and right state vectors of conserved variables,Falde 1D flux
function which follows from Eq. (1). The MHD flux function (in thedirection) is given

by

[ p ] PUx
PUx pv2+ p+ B?/2— B2
Py puxvy — By By
F PBl;z _ PUXV;z o— By B, . %
By Byvx — Byvy
B, Buyx — By,
L€ L(e+ p+ B?/2vx — Bx(v-B)]

The RH relations basically describe the continuity of the mass, momentum, magnetic fi
and energy fluxes through the discontinuity. Three types of shocks are described by
MHD RH relations, connecting plasma states which are traditionally labeled from 1 to
with stake 1 a super-fast state; state 2 sub-fast but superAify’'state 3, sub-Alenic
but super-slow; and state 4, sub-slow [2, 27, 45]. Fast 1-2 MHD shocks refract the m
netic field away from the shock normal, intermediate MHD shocks (1-3, 1-4, 2-3, a
2-4) change the sign of the component of the magnetic field which is tangential to
shock front and thus flip magnetic field lines over the shock normal, and slow 3—4 Mt
shocks refract the magnetic field towards the shock normal. For shocks, there is bo
mass flow through the surface of discontinuity, and an increase in the ertr@mntact
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discontinuities, with vanishingy, but nonzeroBy, have only a jump in density (and en-
tropy). All other quantities are continuous. Tangential discontinuities, with vanishing
and By, have a jump in density, pressure, and tangential velocity and field. However, 1
total pressurep + B2/2 is continuous. Rotational discontinuities rotate the magnetic fiel
around the normal of the discontinuity surface over an arbitrary angle, without a jump
entropy.

There is general agreement that fast and slow shocks can exist physically, but the sul
of the physical admissibility of intermediate MHD shocks and rotational discontinuities h
along history and is still very much debated. See [34, 45] for an introduction and referenc
Recently intermediate shocks have been identified in stationary 2D and 3D MHD bow sh
flows [45, 47].

2.3. Characteristic Analysis of Stationary Field-Aligned MHD Flow

Results on characteristic theory of the MHD equations can be found scattered througt
the literature [10, 24]. We have chosen, however, to make this paper self-contained
providing a compact derivation of the characteristic theory for the sub-class of station
2D planar field-aligned MHD flows [22, 24, 25]. This brief derivation serves to introduce tf
reader who is unfamiliar with the theory of characteristics to the concepts, nomenclature,
notation that is used further on in the paper. Our derivation of the characteristic proper
is based on the Galilean-invariant symmetrizable form of the conservative MHD equatic
with a source term [5, 18, 36] and using a matrix approach [24]. A more complete derivati
of the characteristic properties of MHD using this compact matrix approach (not restrict
to the special case of stationary planar field-aligned flow), can be found in De $teatk
[46].

First we prove that if the magnetic field and the velocity field are aligned at one point
a stationary planar 2D MHD flow, then the magnetic field is aligned to the velocity fiel
everywhere. The classical form of the induction equation ré&j9$t = —V x E. Thus
dB/ot = =V x E = 0leadstdE,/9x = dE,/dy = 0. This means thd,, which is given
by E; = —v x B in planar ideal MHD, is a constant over the whalgplane. This is also
true when discontinuities are present in the flow, as the tangential component of the ele
field is continuous at discontinuities [27].\fB in some point, which implies thdt, = 0
there, thenE, = 0 everywhere, which implies that the magnetic field is aligned to th
velocity field everywhere. This property is a consequence of the fact that the magnetic f
is frozen into the plasma flow for an ideal MHD plasma [27]. For instance, if a stationa
2D flow problem contains a perfectly conducting wall (where the magnetic field and t
velocity field have to be aligned to the wall), then the magnetic field will be aligned to tt
velocity field at every point of the flow. The concept of stationary field-aligned flow is tht
well defined and establishes an important class of stationary MHD flows [19, 46].

We rewrite Eq. (1) witha/dt =0, B, = 0, andv, = 0 (planar flow) in terms of the
primitive variablesV = (p, vy, vy, By, By, p) and introduce the variabte by takingB =
aVv. The steady MHD equations for planar field-aligned flow then reduce ta & System
which can be written in quasi-linear form,

W W
A(W)-a—X+B(W)-8—y=O, (8)
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with W = (p, vx, vy, @, p), and matrices

Ux P 0 0 0
0 azvy/,o avg/,o 1/p
A=10 0 a- az/p)vx —avxvy/p 0 9)
0 « 0 Uy 0
| 0 c?p 0 0 Ux |
and
[vy 0 o 0 0]
0O (1- az/p)vy 0 —avgwy/p O
B=10 a?vy/p vy avi/p  1/p|- (10)
0 0 o vy 0
| 0 0 c?p 0 vy |

The characteristic properties of this system of equations can be derived by analyzing
equations in the form
oW

AW
— +At.B.—=0. (11)
ax dy

The eigenvalues of the matix= A~ . B determine the type (hyperbolic or elliptic) of
the five separate characteristic fields of the system. Hyperbolicity depends on the valu
the state variablgV. A characteristic field is hyperbolic if its associated eigenvalue is re:
and thus defines a real characteristic direction inxghglane. For those real characteristic
fields, Riemann invariants (RIs) may exist which describe quantities which are conserve
their associated characteristics. Those Rls can be found by analysis of the left eigenve:
of matrix C. When a characteristic field is elliptic complex eigenvalues are obtained. Mc
information on these concepts and this methodology can be found in [9, 10, 46].

For purposes of comparison, we repeat here the basic results for the characteristic prt
ties of stationary planar hydrodynamic (Euler) flow, with which the reader may be famili
[9, 10]. In this case the state vector is givenWy= (p, vx, vy, p), and there are four char-
acteristic fields. The streamlines are twofold-degenerate characteristics and the entrop
the stagnation enthalpy are the associated RlIs. The equations are fully hyperbolic whe
flow is supersonic, and in supersonic regionsNtaeh linesare characteristics of the equa-
tions which exist in real space, making equal angMadh angle} with the streamlines.
For subsonic flow, the Mach lines do not exist and the associated characteristic fields
elliptic.

Analysis of Eq. (11) leads to similar results for the characteristic properties of station:
field-aligned MHD flow.

The characteristic condition d&( Al) = 0 can be factored in terms of the variable

(—vy + vx)&)2

12
1+22 7 (12)

2 _
v =
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which represents the square of the velocity component perpendicular to the characteristi
the direction of the characteristic is givendby/d x = A. This factorization leads to the roots

vil =c?(1—a?/p) +v%a?/p and viz =0. (13)

The equation fow, , always has three real solutionis, 45 = vy/vy, meaning that the
streamlines are threefold degenerate characteristics. The corresponding left eigenve
are

Ls=(—c%0,0,0,1), Ls=(—a/p,0,0,1,0), and
L5 = (Cz/(lovy)7 Ux/vy, 13 Ov 0)7 (14)

and can be used to derive the Riemann invariants
X3=S, xa=p/a, and xs=hs. (15)

For instance, the condition thag - dW = 0 in the direction of the characteristic with
slopevy /vy can be written ags - (dp, duvx, dvy, de, dp) = —c?dp + dp = 0. This leads
to ds = 0, because it follows from Eq. (4) thds = dp/p? — yp/p?tdp = (—C?dp +
dp)/p?. This means that the entropys a RIl. The entropyy/«, and the stagnation enthalpy
are thus conserved on a streamline in continuous flow. It can be derived from the MHD |
jump conditions (6) that the entropy is discontinuous when a streamline crosses a sh
However, the stagnation enthalpy ant are conserved over a shock for field-aligned flow.

The solutions of the equation for ; are

_ puxvy £ /(02 — ) (? — p)(C3(a? — p) — v2a?)

A
12 ,O(C2 — v)%) — a?(c? —v?)

(16)

If the factor under the square root sign is positive, then these eigenvalues are real, an
equations are hyperbolic [19, 22, 24, 25, 46]. This factor changes sign three times, \
when the square of the velocity equals

v?=c4, v¥=c and v =ci, (17)
The cusp velocity is defined &g, = (c°c3)/(c* + c5) and is the velocity of the slow wave
cusp in the MHD Friedrichs diagram [22, 24]. Note that we definas the Alf\én speed in
the direction of the magnetic field in the case of field-aligned flow. This leads to a divisi

of the parameter space into elliptic and hyperbolic regions, as depicted in Fig. 1, for h

poi Bl sl :zggs_l_:z Hfl 2
2, < c v

B*<l I__ESZ_ -4 Hs2 ; _EES_Z_ ; Hf2

¢, c¢? 13 v

FIG. 1. Elliptic and hyperbolic regions in parameter space for steady planar field-aligned MHD. The top li
corresponds t@* > 1 and shows, as® decreases, a division in a fast hyperbolic region (Hf1), an elliptic region
between the fast and the slow hyperbolic regions (Efs1), a slow hyperbolic region (Hs1), and an elliptic rec
below the cusp speed (Ecl). The bottom line shows a similar divisioffer 1. Forg* = 1, ¢ = ca.
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and low g*, where the parametgt* is defined ag3* = p/(B?/y) = ¢?/cz = MZ/M?,
with the sonic and Alfehic Mach numbers defined & = v/candMa = v/cCa.

The local geometry of streamlines arg characteristics for the case of planar steady
field-aligned MHD in hyperbolic regions is very similar to the Euler case. The streamline
a threefold degenerate characteristic, and there are two additional families of characteri
(generalized Mach linefL0, 9]) which make equal angleg with the streamline. These
characteristics can be of the slow or fast type, depending on which hyperbolic regime
parameters are in (Hf or Hs of Fig. 1).

We are now ready to use this characteristic theory for the analysis of the physical pr
erties of five 2D planar field-aligned MHD model flows of increasing complexity in th
next section. In Section 5.6 we use this characteristic theory for the formulation of g
convergence criteria for 2D MHD flows belonging to the class of planar field-aligned flow
In Section 6 these criteria are used to study the grid convergence of the numerical simule
of the five field-aligned model flows with our MHD scheme.

3. PHYSICAL ANALYSIS OF FIELD-ALIGNED MODEL FLOWS IN TERMS
OF STATIONARY CHARACTERISTICS

Inthis section we present five model flows of increasing complexity belonging to the cl:
of stationary planar field-aligned MHD flow. We analyze the flows and the stationary wa
structures present in terms of stationary characteristics. The figures shown in this sec
are actual simulation results obtained with our numerical MHD code using a second-ol
scheme, but we defer discussion of the numerical aspects of the simulations to Sectic
and 6.

3.1. Cylindrical Expansion Flow

The first model flow (Fig. 2) is a stationary cylindrical expansion flow in the domai
(r €[4, 2],6 €[0°, 30°]). A uniform superfast radial inflow with radial magnetic field is

0.80 1.45 2.10

FIG. 2. The cylindrical expansion flow (78 70 grid). Density contours (thin solid) and streamlines (thin
dotted) are shown. The streamlines are also magnetic field lines. The thick solid lines represent simulation do
boundaries with ideal wall symmetry. The flow is hyperbolic in the whole simulation domain. Two families of fa
characteristics (thick solid) make equal angles with the streamlines. The flow is smooth in the whole simula
domain.
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imposed at the = 1 boundary, witho =1, p=1, v, = 3, andB, = 1. The sonic and
Alfvenic inflow Mach numbers are thi = 2./3/+/5 andMa = 3. The plasmais allowed
to flow out freely atr = 2. Forr > 1, a stationary completely smooth radial expansior
profile with variables only changing as a functionrofesults. This flow is thus strictly
speaking a 1D flow.

In Fig. 2 and the subsequent figures, density contours are shown as thin solid lir
and streamlines as thin dotted lines. The streamlines are also magnetic field lines.
streamlines are threefold-degenerate characteristicsswihl, andp /o as associated RIs.
The thick solid lines represent simulation domain boundaries with ideal wall symmet
Two families of fast characteristics (thick solid) make equal angles with the streamlines
hyperbolic regions.

As the inflow in Fig. 2 is uniform and every streamline thus carries the same valu
for the RlIss, hg, andp/a, those Rls are global invariants over the whole flow domain
V.B =0andB; (1) = 1imply thatB, (r) = 1/r. The four state variablgs, p, B;, andv,
can thus be determined as functions &fom B, (r) = 1/r and the three global invariants,
which establishes the exact analytical solution of this flow problem. The flow is hyperbo
Hf1 (Fig. 1) everywhere, so the two (generalized) Mach characteristics exist. This flow
smooth everywhere, and this is the property which distinguishes it from the model flo
to be presented next, which contain increasingly complex (weakly) discontinuous fl
features. This flow is related to the stellar outflow problems discussed in [26, 31, 42,
50]. By giving the flow a rotational component at the inflow boundary, we obtain a no
field-aligned model problem describing radial outflow from a rotating object [26, 42]. Th
rotating outflow problem is described and analyzed in Section 4.

3.2. Expanding Tube Flow

In Fig. 3 we shows a stationary expanding tube flow in the domia [0, 1],y €
[Yo(X), 1]), with yp(x) = 0 for x € [0, 0.3] and yp(X) = —1+ cogxr/4 x (x — 0.3)) for
x € [0.3, 1]. Auniform superfast horizontal inflow with horizontal magnetic field isimpose
at thex = 0 boundary, witho = 1, p=1, vx = 8, andBy = 4. The sonic and Alfehic
inflow Mach numbers are thuid = 8./3/+/5 andMa = 2. The plasma is allowed to flow
out freely atx = 1, where the flow remains superfast. A& yo(X) andy = 1 we impose
ideal wall symmetry conditions. A stationary expanding flow results, as shown by the den:
contours of Fig. 3.

The flow is hyperbolic Hf2 (Fig. 1) in the whole simulation domain, such that two familie
of fast characteristics exist. As long as the lower wall is straight, the flow is uniform. Whe
the wall starts to curvéx = 0.3), this acts as a (wavelike) perturbation, which can only
propagate downstream along the characteristics. This means that the flow is non-unif
only below the upward fast characteristic which originates from the lower boundary
(x = 0.3) with an angle ofy = 31.276, as can be calculated from Eq. (16). This fast
characteristic thus separates a uniform flow region from a perturbed region, and is t
necessarily aveak discontinuity9, 10]. At a weak discontinuity, the spatial derivative of
the flow variables in a direction perpendicular to the weak discontinuity characteristic
discontinuous. However, the flow variables themselves are continuous, and the entroy
thus also conserved on streamlines across weak discontinuities. A weak discontinuity
detaches from the lower wall where the tube starts to expand. This weak discontinuity
fast characteristic, and is followed by a simple wave [9, 10, 46] rarefaction region.
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FIG. 3. The expanding tube flow (7% 125 grid). The flow is hyperbolic in the whole simulation domain.
A weak discontinuity detaches from the lower wall where the tube starts to expand. This weak discontinuity
fast characteristic and is followed by a simple wave rarefaction region. One family of characteristics consist
straight lines in the simple wave region. The simple wave is not centered.

This rarefaction is called a (stationary) simple wave because it carries a variation in
one MHD wave family. It is a property of simple waves that one family of characteristi
consists of straight lines and that the flow variables are constant along these characteri
so that the characteristics are parallel to the contour lines of flow variables, e.g., the den
as can be seeninFig. 3. Inthe present flow, these straight line characteristics do not con
at one point, so this simple wave is not centered. Centered simple waves exist in rarefa
flows around sharp corners, like the well-known Prandtl-Meyer flow [5]. Such a she
corner is a geometrical singularity in the boundary and this can complicate grid converge
studies, as is explained in the next section. For this reason, we have chosen to presentr
flows with smooth boundaries in this paper. A simple wave, also if it is non-centered, can
described mathematically as a function of only one spatial parameter, so strictly speal
this flow is still 1D. As the inflow is uniform, every streamline throughout the whole domai
carries the same values for Rig and p/«, and also fors, as the flow does not contain
strong discontinuities. These RIs are thus global invariants over the whole flow domair

This flow contains a weak discontinuity, and this is the property which distinguishes
from the fully smooth model flow discussed in Section 3.1.

3.3. Wedge Flow

Figure 4 shows a stationary wedge flow in the dontai® [0, 1], y € [Yo(X), 1.5]). The
lower simulation domain boundary has the form of a wedge with ahge30°.

A uniform superfast horizontal inflow with horizontal magnetic field is imposed at th
x = 0 boundary, witho =1, p =1, vx = 8, andBx = 4. The sonic and Alfghic inflow
Mach numbers are thug = 8/3/+/5 andMa = 2. At y = y(x) andy = 1 we impose
ideal wall symmetry conditions. The wedge geometry causes the formation of a fast Ml
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FIG. 4. The wedge flow (106 200 grid). The flow is hyperbolic in the whole simulation domain. A plane
fast MHD shock is formed where characteristics start to intersect near the lower wall. This discontinuity stretc
out upwards in a straight line.

shock, as shown by the accumulation of density contours in a solid line. At the shock,
magnetic field lines are refracted away from the shock normal in going from upstream
downstream, which shows that this is a fast MHD shock. The plasma is allowed to flow
freely atx = 1, where the (normal) flow is superfast.

As the inflow is uniform, every streamline throughout the whole domain carries the sal
values forhs andp/a, but not fors, as the flow does contain a strong discontinuity where
the entropy increases discontinuously. Only the iRland o/« are thus global invariants
over the whole flow domain. The flow is hyperbolic Hf2 (Fig. 1) everywhere, so the tw
(generalized) Mach characteristics exist.

We have to remark that the two straight “legs” of the wedge could be connected at3,
but that we have again chosen a smooth boundary with the wedge corner smoothed out
circular profile. The lower boundary is describedygyx) = 0 forx € [0, 0.2] andyp(X) =
tan(30°) x (x — 0.3) for x € [0.3+ 0.1 % cog30), 1]. A segment of a circle with cen-
ter point(0.2, 0.1 % (1 4+ cog30°))/ sin(30°)) and radius = 0.1 % (1 + cog30°))sin(30),
which is tangent to the two “legs” of the wedge, then replaces the corner singularity of 1
wedge with a smooth profile. Close to the lower boundary our wedge flow with smoc
boundaries is thus slightly different from a wedge flow with a sharp corner, and one c
see a small compression wave region with converging characteristics in the corner re
on Fig. 4 [53], but above the point where those characteristics converge and the shoc
formed, this flow is identical to the wedge flow with a sharp corner.

The wedge flow described in this section contains a plane strong discontinuity, and 1
is the property which distinguishes it from the flows discussed earlier. MHD wedge flo\
have also been discussed in [31].
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FIG. 5. The bow shock flow (8 80 grid). A fast MHD bow shock is formed in front of the cylindrical
obstacle. The flow is hyperbolic in front of this bow shock, and also behind the shock front sufficiently far upw:
from the horizontalx-axis. The region behind the shock front and close to the horizangdis is an elliptic
region, in which real fast characteristics do not exist. This elliptic region is separated from the upward hyperk
region by theM = 1 contour (dashed).

3.4. Bow Shock Flow

In Fig. 5 we show a stationary bow shock flow in the dom@ire [ro(#), 0.125], 6 €
[90°, 180°]), with ro(@) = 0.75— 0.45(6 — 90)/90. The bow shock is formed by the ob-
struction of a uniform incoming flow by a rigid perfectly conducting circular cylinder witt
r = 0.125. A uniform superfast horizontal inflow with horizontal magnetic field is impose
atther = roboundary withp =1, p = 0.2, vx = 2,andB = 0.1. The sonic and Alfghic
inflow Mach numbers are thid = 2./3andMp = 20. Aty = Oandr = 0.125 we impose
ideal wall symmetry conditions. The plasma is allowed to flow out freely at0, where
the (normal) flow is superfast. A curved fast MHD bow shock is formed, as shown by t
accumulation of density contours. At the shock, the magnetic field lines are refracted a
from the shock normal in going from upstream to downstream, which shows that this i
fast MHD shock.

As the inflow is uniform, every streamline throughout the whole domain carries the sa
values forhg and p/«, but not fors as the flow does contain a strong discontinuity. Only
the RlIshs and p/a are thus global invariants over the whole flow domain. The flow i
hyperbolic Hf1 (Fig. 1) in the upstream region and in the part of the downstream regi
above the dashed lin@? = c® or M = 1 contour). In these hyperbolic regions the two
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FIG. 6. The nozzle flow (480« 160 grid). The flow is hyperbolic in the whole simulation domain. A fast
MHD shock is formed where characteristics start to intersect. This shock is reflected by the lower wall, by
upper wall, and again by the lower wall before it leaves the simulation domain. Throughout these reflections,
shock front remains nearly plane and the shock remains of the fast type.

(generalized) Mach characteristics exist. The downstream region beldw the contour
is of elliptic type Efs1, and real characteristics do not exist in this region.

The bow shock flow described in this section contains a curved strong discontinuity &
an elliptic region, and these properties distinguish it from the flows discussed earlier. Ml
bow shock flows have been discussed before [1, 5, 45, 46, 54]. De $texcjd6] describe
the characteristic analysis of a complex MHD bow shock flow which contains interacti
fast and intermediate shocks and tangential discontinuities and several alternating reg
of the different hyperbolic and elliptic types of Fig. 1.

3.5. Nozzle Flow

In Fig. 6 we show a stationary nozzle flow in the dom@ire [0, 3], y € [0, y1(X)]), with

y1(x) = 1 — 0.3 % sirf(r/3% x). A uniform superfast horizontal inflow with horizontal
magnetic field isimposed at tixe= 0 boundary witlp =1, p =1, vy = 3.5,andBy = 2.
The sonic and Alfehic inflow Mach numbers are thid = 3.5/3/+/5 andM, = 1.75.
At y = 0 andy = y; we impose ideal wall symmetry conditions. The plasma is allowed t
flow out freely atx = 3, where the (normal) flow is superfast. A fast MHD shock is formec
near the upper wall because of the curvature of this wall, as shown by the accumulatio
density contours. At the shock, the magnetic field lines are refracted away from the sh
normal in going from upstream to downstream, which shows that this is a fast MHD sho
This shock reflects several times from the rigid ideal wglis 0 andy = y; (x).

As the inflow is uniform, every streamline throughout the whole domain carries the sa
values forhg andp/«, but not fors as the flow does contain strong discontinuities. Only
the RIshs and p/a are thus global invariants over the whole flow domain. The flow i
hyperbolic Hf2 (Fig. 1) everywhere, and two (generalized) Mach characteristics exist.

The nozzle flow described in this section contains strong discontinuities which are
flected by ideal walls, which distinguishes it from the flows discussed earlier. MHD noz:
flows have been discussed before in [1].

4. PHYSICAL ANALYSIS OF A ROTATING OUTFLOW WITH THE FIELD
NOT ALIGNED TO THE FLOW

In this section we describe and analyze a model problem describing radial outflow fr
a rotating cylindrical object. We start from the cylindrical expansion flow described |
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FIG. 7. The rotating outflow problem (78 70 grid). Density contours (thin solid), streamlines (dashed), anc
magnetic field lines (dotted) are shown. The magnetic and velocity fields are not aligned. The flow is smoot
the whole simulation domain.

Section 3.1. We take the same inflow conditions and keep5/3, but add a rotational
velocity component, = 1 in the counter-clockwise direction. The magnetic field remain
radial at the boundany = 1. We extend the simulation domain uprte= 6 andé = 360°.
The resulting smooth stationary flow is show in Fig. 7. The magnetic field lines (dotte
are clearly not aligned with the streamlines (dashed). If we transform to a coordinate fre
rotating rigidly around the origin with angular velocify = —1, the velocity becomes
radial, and thus parallel to the magnetic field (which is not changed by the coordin
transformation). It can be proved that in this rotating frame the magnetic field and
velocity field are aligned everywhere, if they are aligned at the boundary and if the fl
is stationary. This is again just a consequence of the MHD frozen-in condition. In the r
frame, however, the flow is not field-aligned, as can be seen in Fig. 7. This flow can tl
be interpreted as a field-aligned radial outflow from a rotating object and is related to flo
studied in the context of stellar winds [26, 42].

We want to study the grid convergence behavior of this non-field-aligned flow, but cani
directly use the characteristic invariants derived for field-aligned flow. Fortunately, rela
invariants can be found for this effectively 1D rotating flow [26, 42], as is briefly reviewe
next.

The rotating outflow is completely specified when the six conswantg, fg, 2, ra, and
h are chosen in

fg = Br, (18)
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(vg — Qr)B — v, By = E; =0,

B
Qri:r(vg— Br 9) =L, and
PUr

h= %v,z + %(ve —Qr)? + ﬁg - %erz.
Heres is the entropy,f, and fg are the radial momentum flux and magnetic flax,
is the angular speed of the rotating objegt,is the Alfven radius andh is the Bernoulli
constant E; is the electric field in the direction, andL is the angular momentum density.
The invariants defined in Eq. (18) are used to study grid convergence for the rotating outf
problem in Section 6.
Following Sakurai [42], we can derive tiernoulli function Hr, p),

f2 1 ra/f —r/ra\? % 1
H(r, p) = —M + Zr2Q? sp’ "t — ZQ%r2 19

For given constants, fn,, fg, @, andra we can implicitly describe therbits p(r) as
level curves of the Bernoulli functioil (r, o) = h for varying h. Figure 8 shows these
orbits (dotted) for the values of fn, fg, 2, andra corresponding to the simulation shown
in Fig. 7. The thick solid orbit corresponds to the value of the Bernoulli constafthe
simulation. Two other curves of interest are thst/slow Mach curvdefined byoH /9p = 0
(thin solid) and thehroat curvedefined byaH /or = 0 (dashed). Orbits are vertical where
they cross the fast/slow Mach curve, and horizontal where they cross the throat curve.
fast/slow Mach curve and the throat curve cross &4dwpe critical point The other critical
pointis located at infinity. This critical point analysis is instructive because it shows that t

P

FIG. 8. Critical point analysis for the rotating outflow problem. The dotted lines are solution orbits. Th
thick solid line is the orbit corresponding to the flow shown in Fig. 7. The thin solid line is the fast/slow critic:
curve, and the dashed line is the “throat” curve. There is one finite critical point (of O-type) where these t
curves intersect. The outer radius of the simulation domain has to be chosen smaller than appraximatip
obtain a continuous stationary solution. Indeed, at the point where the orbit and the fast/slow line cross, the
becomes subfast. The continuous orbit becomes multi-valued, which means that there is no continuous solt
but a (non-stationary) shock would be formed.
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outer radius of the simulation domain has to be chosen smaller than approximai&@ to
obtain a continuous stationary solution. Indeed, at the point where the orbit and the fast/
line cross, the flow becomes subfast. The continuous orbit becomes multi-valued, wt
means that there is no continuous solution, but a (non-stationary) shock would be forn
The model problem of Fig. 7 does thus not constitute an example of a smooth outflow ir
infinite domain. In an appropriately chosen finite domain, however, this problem descril
a valid MHD flow with well-defined boundary conditions (the flow remains superfast at tl
outer boundary), and is thus perfectly suitable for the purpose of testing a numerical M
code through grid convergence study. To conclude, we can remark that this non-field-alig
model problem is really a very special case. It could be constructed from the cylindri
expansion flow by rotation because the cylindrical expansion problem has the pect
property that the flow, the boundary shapes, and the boundary conditions themselve:
all rotationally invariant. We anticipate that it will be very difficult to find stationary 2D
non-field-aligned model problems without such special symmetries.

5. AFINITE VOLUME NUMERICAL SCHEME

In this section we discuss tseandard?D high-resolution finite-volume numerical MHD
scheme on a structured body-fitted grid for which we investigate grid convergence of
presented model flows further on in the paper. Our discussion is brief because most o
numerical techniques have been presented before [e.g., 1, 28, 32, 33, 36, 57] and be«
the presentation of this numerical scheme is not the main motivation of this paper.
intend to give a description which completely specifies our numerical approach, howe
because this establishes the repeatability of our numerical experiments and will facili
comparison with other numerical codes [11]. This code has been implemented for ust
massively parallel computers using the MPI message passing library. We describe the
version of the code here, but a 3D version has been implemented as will using basically
same algorithms [33, 47].

The ideal MHD equations (1) can be written in the following abstract conservation le
form,

U
STV FU =s (20)

with U the vector of state variables which are conserved quantii#ise flux vector, and
Sthe Powell source term.

5.1. Spatial Discretization

We divide the computational domain into a logically rectangular structured grid of quad
laterals. The solution of the flow is sought in thieysicalcells, with indices in the compu-
tational domain ranging from 1 tg for indexi, and from 1 tan; for index j. This physical
domain is surrounded by two layers giiost cellswhich allow for a simple implementa-
tion of boundary conditions (see Section 5.5). The cell interfaces are not constrained t
parallel to a Cartesian axis, which for instance allows to fit the grid to a curved rigid boc
We integrate Eq. (20) formally over the cell with lal@l j), and obtain the discretized
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equation

4

+1/Qi; Y Fi-nde =0, (21)
k=1

Ui |
at

for the time evolution of the average of the state variable over(icel

U = (/ U(x, y, t) dx dy)/sziﬁ,-, (22)

which is stored in the center of celi, j). Here @; ; is the area of celli, j), and the
summation in Eq. (21) extends over the four sides or interfaces of(icgl). F is a
numerical approximation for the flux vector through the interflack, is the length of
interfacek, andny is the outward unit vector normal to siéte

For each interface, we usenamerical flux functiorof the form

SONTSEREC i 2 TV TS (23)
to calculate=* = F* - n. HereF is the 1D MHD flux function of Eq. (7), and, andU, are
the state variables to the left and to the right of the interface. The third @¢,, U, ), is
in general proportional t&), — U,. A first-order accurate spatial discretization is obtainec
if we take the left and the right state used to calculate the numerical flux to be the c
averages to the left and the right of the interface. In this picture, the solution is imagir
piecewise constari every cell. The third ternD (U, U;) adds an amount of (numerical)
dissipation appropriate to make the scheme numerically stable. There are many choice
the exact form of this dissipative term, corresponding to the choice of an (approxima
Riemann solver. This is discussed in Section 5.4. Second-order spatial accuracy is obte
by consideringpiecewise-lineawvariation in a cell. The values at the cell interface are ther
calculated vidinear reconstructionTo discard spurious oscillations at discontinuities, we
use the non-lineaninmod slope limitef28] to determine the slope of the linear reconstruc-
tion, and for robustness reasons we do the second-order reconstruction using the prirr
variablesW. Experience shows that the accuracy at boundaries is improved when the n
linear limiting is performed on vector components in the coordinate system aligned w
the interface. This simple dimension-by-dimension approach turns out to work well, a
numerical experiments like the ones to be shown further on in this paper show that
scheme remains close to second-order accurate if the grid is not distorted too much. A n
sophisticated approach would be to do reconstruction using estimates of gradients base
2D interpolation [5].

5.2. Discretization of the Source Term

We use the following discretization for the source tegm in cell (i, j). V - B is dis-
cretized as

4

(V-B)ij =1/ Y Br Nyl (24)
k=1
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with
Bx = (B +Br)/2 (25)

the average of the (reconstructed) magnetic fields on the left and the right of the interf:
This discretization oWV - B is then multiplied with the appropriate cell-averaged state var
ables (stored in the center of céll j)) to obtain a discretization for the source term of
Eq. (1). Experience has shown that it is important to user¢benstructedralues in the
discretization oV - B for the second-order scheme, because this seems to result in a ir
robust scheme.

5.3. Temporal Discretization

We use explicit Runge—Kutta time integrators. A one-stage scheme is used for the f
order scheme, and a two-stage scheme for the second-order scheme [32, 33]. The time
At is derived from the CFL-like time-step limitation [33]

Qi,j
Sh_imax(0, (vij - ng +Ckf$i,j))|k

= CcrL mln (26)

with ckf,i’j the fast MHD wave speed in the directiop calculated with the cell-averaged
state values stored in cgll j). The constantcr has to be chosen smaller than one for the
first-order scheme, and may be chosen slightly larger than one for the second-order sch
We useccr. = 0.8 for all the calculations presented further on in this paper.

We use these general time-accurate integration methods to calculate the stationary
solutions to be described further on in this paper. In general, we start from a uniform ini
flow condition and we evolve the flow in time until vanishing of the resid&ashows that
a steady state has been reached. We use the following quantity based on the density re:
to measure the convergence to a steady state at iteration

o 2
R(m) = log (Cnorm <M> ) : (27)

nin;

with n; andn; the number of cells in theand j direction,R’; (m), the density residual in
cell (i, j), and the normalization constaty,m chosen in such a way th&(0) = 0. We
routinely achieve convergence of 15 orders of magnitude, which means that the resid
are driven to machine zero. Throughout this article we mean the base-10 logarithm w
we use “log” in convergence measures and on plots.

It would be possible to obtain convergence to a steady state more efficiently, and m
convergence acceleration methods of varying complexity could be tried, ranging from sinr
local time-stepping over implicit residual smoothing and multigrid to fully implicit time
integration [33, 54], but simple explicit time integration is sufficient for our study of gri
convergence of the spatial discretization.

5.4. Numerical Flux Functions

Throughout the years, many interesting MHD numerical flux functions have been p
posed that can be used in the type of finite volume discretization described above, mo
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them based on some kind of approximate Riemann solver at the interface between two
[1, 4,5, 8,12-14, 17, 34, 36, 39-41, 55, 58]. Many of those flux functions are desigr
to produce as sharp as possible shock transitions and tangential discontinuities. The
scheme, for example, which has been very popular for hydrodynamic applications, has k
extended to MHD [5, 8, 36, 39]. This scheme tries to minimize the numerical dissipation
decomposing the differendd — U, present inD (U, U;) in the space of the eigenvectors
of the Jacobian and by applying the minimum amount of numerical dissipation to eve
characteristic wave separately. There remain, however, several serious problems of |
numerical instability with this scheme, like the carbuncle phenomenon, as for example
scribed by Quirk [37]. Probably because of these problems the Roe scheme is not ir
used in MHD simulations [26, 32, 45].

Several approaches have been proposed to remedy these problems. First, different
of non-linear flux functions are being investigated, e.g., Linde’s HLLE-based solver f
MHD [31], which is based on some other form for the numerical dissipation, or solve
derived from kinetic descriptions [31, 32]. These new flux functions seem to remedy so
of the problems associated with the Roe solver, but more investigation is necessary tc
if they can solve all the stability problems. Second, it is sometimes argued that much of
problems with finite volume schemes on structured grids are inherent to the dimension-
dimension approach, and that many of the pathological instabilities could be removed
considering truly multi-dimensional schemes on unstructured grids [11]. Third, the failu
of the Roe scheme can probably be related to the fact that it ismimpy-stabld5]. New
entropy-stable schemes formulated in symmetrizetopy variablesre being developed
[5] and it can be expected that they will lead to more stable numerical schemes. Also in
area much research is still going on.

This short discussion shows that there are certainly many unsolved issues regardin
choice of numerical flux functions and numerical schemes in general. In this paper,
make the “conservative” choice to carry out this grid convergence study using the (loc
Lax—Friedrichs flux function [4, 28, 55], which is given by

FU) + F(Uy)
2

(gl + i 2

F*(U,Up) = >

(28)
with [vi| 4 ¢! * the largest wave speed in the direction normal to the interface, determin
from the arithmetic averag@J, + U;)/2 on the interface. The Lax—Friedrichs flux func-
tion applies to all characteristic waves the same numerical dissipation, determined by
maximum wave speed, which makes it more dissipative than the Roe scheme, for insta
but much more robust and less prone to local numerical instabilities. The Lax—Friedric
flux function is certainly one of the most robust and simple numerical flux functions. F
these reasons its use in MHD applications is often advocated [4, 26, 45, 55]. Statior
shock profiles are actually captured surprisingly well with the Lax—Friedrichs scheme
55], but tangential discontinuities are smeared out. We show further on that we obtain
isfactory grid convergence results using this numerical flux function. It will be interestir
to test if other flux functions lead to acceptable grid convergence results as well, but s
an extensive comparison is outside the scope of this paper. One of the main purpose
this paper is to show how grid convergence of MHD codes can be investigated in princi
and we have made the deliberate choice to illustrate this using the most robust, simple,
reliable MHD numerical flux function, and not one of the other flux functions which ar
more prone to local numerical instabilities.
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5.5. Boundary Conditions

We implement boundary conditions making use of two layerghafst cellge.qg., [29]).
Forthe model flows presented, we need three types of boundary conditions. First, at perfe
conducting walls, the magnetic and velocity fields have to be tangent to the wall. This
implemented by copying the cell-averaged state of the last physical cell into the first gt
cell with the magnetic and velocity fields mirrored relative to the boundary segment. T
next-to-last physical cell is copied into the second ghost cell with mirrored magnetic &
velocity fields. Second, at free outflows, where the normal outward plasma velocity is lar
than the normal fast MHD wave speed and all the characteristic information thus propag
outward of the physical domain, the state variables of the last two physical cells are u
to extrapolate linearly into the two layers of ghost cells. Third, at free inflows, whe
the normal inward plasma velocity is larger than the normal fast MHD wave speed and
the characteristic information thus propagates into the physical domain, we impose the v
on the boundary interface and use this and the state of the last physical cell to calculat:
value in the ghost cells using linear interpolation. Although these boundary conditions
again based on a simple dimension-by-dimension extrapolation, they turn out to work v
for the model flows to be discussed below, which have only moderately deformed grids.
have also tested different types of characteristic boundary conditions for the inflows
outflows not based on ghost cells [5], and flux boundary conditions for the perfect walls,
for these different implementations of boundary conditions we found essentially the sa
grid convergence behavior. Therefore we have chosen to present the results with the |
simple and standard ghost cell approach.

5.6. Grid Convergence

We are now at a point where we can define grid convergence criteria for stationary mc
flows, but we first discuss what kind of convergence order we can expect for model flc
simulated with the numerical techniques discussed above.

5.6.1. Formal grid convergenceThe basic idea of grid convergence is that for smoott
flow (see below), some measure of the error of the simulation result should decrease
function of the resolution with an order which is the formal order of accuracy of the scher
Formal Taylor series expansion of the numerical schemes presented above would shov
for a stationary solution

E = [|U—UJ =cd/n)P, (29)

with U the exact solutiorl) the numerical solutiorE the error in some norng,a constant,

n the number of cells in a certain direction—where it is understood that the resolutior
changed proportionally in all directions—armthe order of the method (1 or 2 for the
schemes discussed above). On logarithmic axes this would lead to grid convergence cl
which are straight lines with slope 1 or 2:

log(E) = log(c) — plog(n). (30)

All state variable quantities are expected to be calculated with the accuracy of the sche
It is important to remark here, however, that ¥e B quantity (“magnetic flux production
per unit volume”) with discretization given by Eq. (24) is a sum of derivatives of th
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magnetic field state variables, and can thus be expected to converge more slowly thar
state variables, in the worst case with one order less [5, 16]. Probably for this reason, Li
[31, 36] proposes to measure magnetic flux conservation in a different way. The alterna
quantity

4
1 By - nil

Fj= 7&—14 K | Kk (31)
Zk:l k

is a measure of magnetic flux conservation (“flux production per unit length”) which shou
converge at least with the same order as the state variables. We investigate how these
measures of flux conservation behave for the numerical simulation of our five model flo

The actually observed convergence order for a numerical simulation can be lower tl
the formal order of accuracy of the scheme for several reasons. We discuss in short
possible reasons for convergence degradation. The first two reasons are related to the
lytical properties of fluid flows, viz., to theegularity of flows. The latter three reasons for
convergence degradation seem to be more related to the details of the numerical sche

First, when the analytical solution to a flow contains (weak) discontinuities, then tl
derivatives in the above-mentioned Taylor expansion do not exist everywhere, which me
that the convergence order result derived using the Taylor expansion is not valid. In gen
it can be expected that the convergence order for a numerical scheme will be lower f
solution containing discontinuities. Leveque [28] gives an example where the converge
order of an approximation degrades by 0.5 for a solution containing a discontinuity.

Second, near geometrically singular points on boundaries, the analytical solution to
flow problem is generally not smooth, with similar consequences of convergence-or
degradation [43]. These effects can be reduced by choosing smooth boundaries, a
have done for all our model flows, but even then the finite grid resolution leads to singu
corners at curved boundaries. The effects of these singularities can be reduced by a ce
geometrical refinement of the grid near the boundary [43]. Barth [5] reports improv
grid convergence if interpolation is done with higher order polynomials at the bounde
interfaces than inside the domain (so-caliealparametricboundaries), in the context of
finite element methods which allow more flexibility than our finite volume schemes.

Third, the choice of numerical flux function seems to be important for the errors induc
at boundaries. For instance, it is well known that the Roe scheme can lead to the proble
wall-heatingat perfect wall boundaries [29]. It seems that our choice of the Lax—Friedricl
flux function in general performs better in such situations, and our grid convergence res
seem generally to be satisfactory. We have thus not adopted the strategy to exclude phy
cells close to the boundaries from our error norm calculations [49, 50], because we tt
that this process is somewhat artificial and arbitrary, and because we want to prove
convergence of our standard numerical scheme with the boundary treatment included
have to admit, however, that the errors are often large not only at discontinuities, but ¢
at the boundaries.

Fourth, near discontinuities our second-order scheme will switch to first-order accur:
dueto the action of the non-linear limiter. In error norms calculated over the whole simulati
domain, these local first-order errors dominate the second-order errors in smooth part
the flow, resulting in convergence degradation to first order.

Fifth, simulations on highly distorted grids, with angles in cells substantially deviatir
from 90 or cells highly elongated, may show degraded convergence rates [56].
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5.6.2. Practical grid convergence criteriaFor the model flows we propose in this arti-
cle, the analytical solution is generally not known. How can we carry out grid converger
studies then? We do not engage in the use of “self-convergence” criteria [49, 50], bec:
they do not easily lead to rigorous conclusions.

But even when the analytical solution is not known, we can formulate grid converger
criteria. In general we can distinguish three classes of grid convergence criteria.

The first class of criteria follows directly from the divergence nature of the steady cc
servation law (Eq. (1) with vanishing time derivative) and theB constraint. These laws
basically state that the divergence of a flux vanishes. This leads to grid convergence cri
in two ways.

First, over the whole physical domain, the integrated form of the divergence law shc
that the line integral of the normal flux through the circumference of the physical domain
to vanish. For instance, in a steady flow the net flux of density (the momentum) through
boundaries has to vanish, and numerically this net flux has to converge to zero in functio
resolution. This, however, merely checks global conservation and only gives a very glc
measure of accuracy, as internal errors can cancel out, and this grid convergence me
is not further exploited in this article.

Second, when the flux vectors are aligned with a boundary at two opposing bounda
of the simulation domain, and the boundaries thus filumtubesthe flux through any line
connecting the two boundaries has to be the same. This can be tested along lines consist
cell interfaces. We extensively use this observation to verify if the magnetic and moment
fluxes through sections of flux tubes are constant along the flux tubes. This leadsto ar
local measure of accuracy. Suppose for instance that the boundariesjbeldvand above
j = n; are perfect walls; then we can calculate the (magnetic or momenturm®flux,
through every line formed by interfaces between cells with equal coordinatedi + 1,
using the reconstructdd, andU; in the averag€U, + U;)/2 at every interface, and with
i running from O ton;. Then an L1 error measure can be defined as

I aby®;1/2 — Pineor)
n+1

B.m _
Es' =

: (32)

with ®eor the known theoretical value of the flux, af and EJ the magnetic and
momentum flux error measure, respectively. Flux conservation criteria such as this h
been used before to investigate the accuracy of MHD simulations in function of resolut
[1, 31, 49, 50].

The second class of grid convergence criteria follows from the rigorously defined ch
acteristic properties of the class of flows under consideration and leads to measures of
local grid convergence in every cell of the simulated flow. There can be up to four glol
invariants for stationary planar field-aligned flow, as follows from the characteristic ana
sis. The angl® between the magnetic and the velocity fields has to vanish everywhere.
the case of uniform inflow, the Riemann invariapt& andhg are global invariants. If the
flow is additionally smooth, then the Riemann invarian$ a fourth global invariant. An
L1 error measure for these invariantsan be defined as

abgli i — lheo) . |
E| _ Zl,l 1 i, theor) i,j ’ (33)
Zi,j Qi
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with lheor the known theoretical value of the invariant. Note that we actually calculate t
difference between the cell-averaged numerically calculated values of the invariant and
cell average of the theoretical value of the invariant (which, of course, is the invariant itse
Global grid convergence criteria based on characteristic invariants have to our knowle
not often been used to investigate the accuracy of 2D MHD simulation results in functior
resolution. Thes andhg quantities keep their invariant properties in stationary Euler flow
so this type of grid convergence study can also be carried out for that case, as is well knc
Finally, we should mention that - B should vanish in theory for every MHD flow, so this
can easily be tested using the same expression to calculate the error.

The third class of grid convergence criteria follows from the RH jump relations. If suff
cientinformation is available in terms of imposed upstream flow conditions and geometri
constraints, then the remaining unknown values can be calculated from Eq. (6) with h
accuracy, and in some cases analytical solutions can be found. These values can the
compared with the values resulting from full 2D numerical simulations of the flow, and gr
convergence can be investigated.

In practice, we measure the simulation error using the above given expreEsama
function of the number of grid cells in a certain directioand determine the numerical
convergence order by a least-squares fit of the log Eilogrve with generally four data
points.

6. GRID CONVERGENCE STUDY OF MHD MODEL FLOWS

In this section we discuss numerical simulation aspects of the model flows preser
in Section 3 and the non-field-aligned flow presented in Section 4, and we present ¢
convergence results obtained with the criteria discussed in Section 5.

6.1. Numerical Simulation Aspects

The steady state simulation results shown in Figs. 2—6 are obtained via time-accu
relaxation starting from uniform initial states. Figure 9 shows the convergence of the lo
rithm of the density residual towards a steady state solution as a function of the numbe
time-steps. We can observe that the steady state convergence of our numerical sche
extremely well behaved. For all simulations we obtain convergence up to machine accur
using both the first-order scheme (solid) and the second-order scheme (dash-dotted).
number of time-steps needed to obtain convergence is mostly similar for the first- and
second-order schemes. We used the same CFL number for the first- and the second-
scheme. The computational cost per time-step is, however, about three times higher fo
second-order scheme. The number of time-steps is much higher for the bow shock flow 1
for the other flows, because of the low speeds in the elliptic region near the stagnation p«

Figure 10 shows the simulation grids used for the numerical results presented in this pe
The grids are nearly uniform and the grid cells are mostly quite regular, except perhaps
some strongly deformed cells in the bow shock grid. For the cylindrical expansion probl
and the rotating outflow problem the grid convergence has been studied making us
simulations on 406« 40, 50x 50, 60x 60, and 70x 70 grids. The expanding tube problem
has been simulated on 3050, 45x 75, 60x 100, and 75« 125 grids, and the wedge
problem on 40x 80, 60x 120, 80x 160, and 100« 200 grids. Grid convergence for the
bow shock flow has been studied making use of simulations on20, 40x 40, 60x 60,
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FIG.9. Convergence of the logarithm of the density residual towards a steady state, in function of the nurr
of time-steps. First-order (solid) and second-order (dash-dotted) numerical schemes.

and 80x 80 grids, and the nozzle simulations were performed or 48, 72x 24, 96x
32, and 120« 40 grids.

6.2. Grid Convergence Results for Flux Conservation

The cylindrical expansion flow, the expanding tube flow, the wedge flow, and the noz
flow all have opposed simulation domain boundaries which are ideal walls and thus de
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FIG. 10. Finite-volume simulation grids. Successive conformal refinements of these grids have been use«
the grid convergence study.
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FIG. 11. Grid convergence behavior of the magnetic and momentum flux conservation for five test cas
The first row shows the normalized magnetic flux through vertical or radial sections in function of the vertic
or radial coordinate for four different grid resolutions, both for the first-order scheme (dotted) and the seco
order scheme (dashed). The second row shows the normalized momentum flux profiles for the first-order scl
(dash-dotted) and the second-order scheme (dash-dot-dot-dotted). The third row shows the 10 logarithm of tt
norm of the errors of the magnetic flux (triangles, first-order dotted and second-order dashed) and momentun
(asterisks, first-order dash-dotted and second-order dash-dot-dot-dotted), in function of the grid resolution (
10 logarithms oh, the number of grid cells in thiedirection).

a flux tube. We can study grid convergence of the magnetic and momentum flux throt
these flux tubes. The rotating outflow problem described in Section 4 has the propert;
radial conservation of magnetic and momentum flux. Figure 11 shows the grid converge
behavior of the fluxes for these five test cases.

The first row of the figure shows the normalized magnetic flux through vertical or radi
sections in function of the vertical or radial coordinate. Every panel contains eight curv
four for the first-order scheme (dotted) for increasing grid resolution and four for the secol
order scheme (dashed). We see that in all cases the normalized magnetic flux approe
the value of unity nicely and that the flux conservation is much more accurate for t
second-order results than for the first-order results.

The second row of the figure shows the normalized momentum flux through the verti
or radial sections. Every panel again contains eight curves, four for the first-order sche
(dash-dotted) for increasing grid resolution, and four for the second-order scheme (dz
dot-dot-dotted). We again see that in all cases the normalized momentum flux approas
the value of unity nicely and that the flux conservation is much more accurate for t
second-order results than for the first-order results.

The shape of the momentum flux curves is generally similar to the shape of the magn
flux curves, and this is no surprise for field-aligned flow. Only for the non-field-aligne
rotating outflow (Fig. 11e) are the curves markedly different in shape.

The third row shows the base-10 logarithms of the L1 norms of the errors of the magn:
and momentum flux curves, as functions of the grid resolution (base-10 logaritmyihef
number of grid cells in the direction). The magnetic flux conservation for the first-ordet
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TABLE |
Grid Convergence Order of Several Invariant Quantities

Expansion  Tube  Wedge Bowshock Nozzle Rotating

First order
Magnetic flux —0.98 -1.05 -1.04 -1.08 —-2.30
Momentum flux —0.93 -1.04 -1.08 -1.01 -0.72
s -0.93 -0.87 -0.81
hs -0.82 -1.04 -1.15 -0.86 -0.91 -0.58
pla -0.87 -0.99 -0.97 -0.72 -0.70 -0.82
0 -0.99 -1.06 -0.60 -0.73 -0.84
V-B -0.98 -0.92 -0.79 -0.59 -0.90 -1.33
F =3 (BuAl)/> Al -1.98 -1.92 -1.79 -1.55 -1.90 -2.36
Second order
Magnetic flux —2.06 -190 -1.03 -1.04 -2.10
Momentum flux —2.06 -1.86 -1.02 -1.07 -1.85
s -1.96 -1.74 -1.28
hs -1.91 -110 -1.01 -0.90 -0.87 —-1.92
pla —-2.07 —-1.44 -0.82 -1.07 -0.97 -1.7r
0 -1.78 —-0.99 -0.85 -1.01 -1.89
V-B -1.96 -1.38 -0.22 -0.55 —-0.42 -1.79
F =35 (BuAl)/> Al —-2.95 -2.39 -1.22 -1.53 —-1.43 -2.83

Note.The fitted slope of the base 10 logarithms of the L1 norm of the error in function of the
10 logarithms of the number of grid cells in théirection is shown. For the values marked with
an asterisk, the rotating outflow grid convergence is measured using slightly different invariant
quantities than for the other flows. The results show that the presence of discontinuities (in the
wedge, bow shock, and nozzle flows) consistently degrades the convergence for the second-order
numerical scheme to first order due to the action of the nonlinear limiter. Analytical singularities
or numerical inaccuracies at boundaries and grid distortion may further degrade the convergence.
Such additional convergence degradation can be observed for the valuesitadicaed Overall,
a satisfactorily consistent grid convergence behavior is obtained.

scheme is indicated by a dotted line with triangles and by a dashed line with triangles
the second-order scheme. The momentum flux conservation for the first-order schen
indicated by a dash-dotted line with asterisks and by a dash-dot-dot-dotted line with aster
for the second-order scheme. We observe that in all cases the convergence curves f
a straight line, which indicates convergence with a well-defined order. The fitted slc
coefficients for these lines are presented in Table 1. The cylindrical expansion flow and
expanding tube flow are both smooth flows. The fluxes both converge with the expec
slope close te-1 for the first-order scheme and close-t® for the second-order scheme. The
wedge flow contains a strong discontinuity, and due to the action of the nonlinear limiter,
second-order scheme converges only with a slope closd tdike the first-order scheme.
The second-order results are more accurate, however. The nozzle flow contains shoc
well and also shows first-order convergence both for the first- and the second-order sch
The rotating outflow problem is smooth and shows the expected second-order converg
for the second-order scheme. For the first-order scheme, the momentum flux converges
an order which is lower than first order, but, remarkably, the magnetic flux converges w
slope—2.3.

The main conclusion to be drawn from this grid convergence study for magnetic &
momentum flux conservation is that the experimentally obtained grid convergence orc
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are very close to the theoretically expected orders. The numerical schemes seem th
behave very well. The excellent conservation of magnetic flux indicates strongly that
Powell source term approach produces valid results.

6.3. Grid Convergence Results for Global Invariants

Table 1 contains the fitted slopes of the grid convergence curves for the global invaric
entropys, stagnation enthalplys, p/«, andd. The entropys is not a global invariant when
shocks are present. In the case of the rotating outflow, the invariants are es)tBapgoulli
functionh, angular momenturh, and electric fielcE,, as discussed in Section 4. Note that
no error slope has been given for the grid convergence of the ahgeveen the magnetic
and velocity field for the case of the cylindrical expansion. In the initial condition the fielc
are aligned perfectly up to the machine error induced by a rotation, and this property is ¢
served throughoutthe time relaxation as the flow is perfectly radial. These rotational mact
errors are very small—much smaller than the errors in the other global RlIs—and of cou
do not depend on resolution, so that for this case grid convergerscis abt relevant. The
first-order schemeroduces grid convergence orders which are generally close to the the
retically expected slope 6f1. For some model problems and for some invariants, the col
vergence order is smaller than 1. In this case the slopes are shaadics) where we have
(arbitrarily) put the limit of expected behavior at 80%. Convergence degradation seems t
most severe for the bow shock and nozzle flows, and detailed study of the simulation res
shows that this can mainly be attributed to the interaction of the shocks with the boundar
Overall, however, the results are quite consistent with the order of the scheme. For
smooth flow problems, theecond-order schem@oduces grid convergence orders which
are generally close to the theoretically expected slopedyexcept for the values in italics.
For the expanding tube flow, careful study shows again that convergence degradation
be attributed to interaction with the (not perfectly smooth) boundary. The model problel
with shocks show consistent first-order convergence behavior, again due to the limiter.

Table 1 also shows grid convergence slopesffeB and Linde’s quantity- (Eq. (31)).
For the first-order scheme, we see tRatB converges with an order not too far from
the expected convergence order for state variables, although it is a quantity obtain:
from the magnetic field through derivation. The reason may be that the numerical sche
treatsV - B/p as a passive scalar [36]. Linde’s quantRyindeed converges one order
faster tharVv - B. The second-order scheme produces satisfactory grid convergence bel
ior for the V - B-related quantities as well, except for the wedge, the bow shock and t
nozzle. Again, the convergence degradation there can be traced back to errors at (not
fectly smooth) boundaries and shock-boundary interactions. The order we obtsin Bor
convergence for our broad set of model problems is similar or higher than the order
convergence reported by Linde [31] and Barth [5] for smaller sets of model problems.

To conclude this section about the grid convergence study for global invariants, we can
that the experimentally obtained grid convergence behavior is satisfactorily consistent v
the theoretically expected behavior. Some convergence degradation can be observed ¢
perfectly smooth) boundaries and shock—boundary interactions, but this is not unexpec
given the discussion on convergence degradation in Section 5.6.1. The fluxes discuss:
the previous section, which can be considered as one-time-integrated quantities, seem
less sensitive to boundary effects. The results discussed in this section thus confirm a
the validity of the numerical approach and the source term technique for contrallisg
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FIG.12. The wedge flow. Grid convergence of the Rankine—Hugoniot relations. Ten logarithm of the relat
errors of the downstream density and velocityt(0.96, y = 0.87), in function of the grid resolution. The
density (first-order scheme, dotted, triangles, and second-order scheme, dashed, triangles) does converge,
with a well-defined order. The velocity converges wath= —0.79 (first-order scheme, dash-dotted, asterisks) anc
with a = —0.80 (second-order scheme, dash-dot-dot-dotted, asterisks).

6.4. Grid Convergence Results for Rankine—Hugoniot Relations

For the wedge flow, the inflow quantities and the wedge angle completely determine
angle and the downstream quantities of the fast MHD shock. The algebraic equation
the MHD RH relations (6) can be solved numerically up to a very high accuracy, usi
for instance standard iterative methods provided in software for symbolical calculatio
Following such a procedure, we have obtained the (nearly) exact downstream density
velocity field magnitude to bg = 2.00060295 and = 7.04956575. In Fig. 12 we inves-
tigate grid convergence of the Rankine—Hugoniot relations. The base-10 logarithms of
relative errors of the downstream density and velocitxat(0.96,y = 0.87) are shown, as
functions of the grid resolution. First of all, we can say that our numerical scheme calculz
a solution which closely matches the RH relations. The errors are 1% and lower. The velo
seems to converge linearly with a slope close to the theoretically predicted one, but the
sity seems to behave more erratically. Figure 13a indicates a reason for this. Finite-vol
schemes have the well-known defect that they produce grid-related entropy oscillation
a direction parallel to a shock, and these entropy errors are advected downstream &
the streamlines. This generates small ripples in the downstream solution, which shoul
uniform. The value of the downstream density, for instance, thus depends on the loca
and on the grid resolution, and this degrades pointwise convergence. The entropy 0
lations are quite small with the Lax—Friedrichs scheme, and would be much larger wi
the Roe scheme was used. Due to the inherent defect of finite-volume schemes, we ce
prove proper grid convergence of the RH relations, but we can see that the RH relati
are generally well satisfied and that the tendency is that they are better satisfied on
grids. It will be interesting to see [11] if new MHD schemes based on multi-dimensionr
approaches will reduce or eliminate the downstream entropy contamination typical of fir
volume approaches.
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FIG. 13. The wedge flow. (a) Entropy contours (15 contours between2.43 ands = 2.45, thin) and
streamlines (thick) in a small region which contains the shock. Small errors in the entropy generated at the s
are convected away downstream parallel to the streamlines, generating small ripples in the downstream r
which should be uniform. (b) Divergence of the B field in a small region containing the $kack0.6, 0.8], y €
[0.55,0.75]). V - B is strongly non-zero in a small layer around the shock. Negative and poSitig peaks
cancel each other out, such that on a slightly more global scale, magnetic monopoles are nofpré&sesdaches
values from—3.36 to 6.76 in the region shown.

It is interesting here to investigate more closely what happens witl th& constraint
at a strong discontinuity. Figure 13b shows the divergence oBtfield in a small region
containing the shock € [0.6, 0.8],y € [0.55, 0.75]). V - Bis strongly non-zero in a small
layer around the shock. - B reaches values from3.36 to 6.76 in the region shown. Ac-
tually, an upper bound fov - B can be given by - B = |AB|/AX, with |AB| the jump in
the magnitude of the magnetic field vector across the shockAaral 1D measure of grid
spacing. As in the MUSCL schemes discussed above, a stationary shock is generally
tured with a constant number of intermediate cells which does not depend on the resolus
and agABj| is independent of the resolution, this means #¥aB peaks near shocks will
grow without bounds as/Ax in function of the grid resolution. As second-order scheme:
produce sharper shocks, thie B peaks will be larger when a second-order scheme is use
than when a first-order scheme is used, and our simulation results clearly confirm that
shown). The Roe scheme, which produces sharper shocks than the Lax—Friedrichs sch
also produces largev - B peaks at shocks. The Powell source term approach takes the
V - B peaks into account consistently and the source term precisely neutralizes the dyn
ical effect of theV - B peaks. It is important to note that the exact location and magnituc
of theV - B peaks change when a different discretization is choseN fd8, and even in
numerical schemes which guarantée B to vanish with machine precision in a certain
discretization, itis clear that - B peaks are present as soon as one looks-& in a differ-
ent discretizationV - B peaks are an unavoidable consequence of our attempt to repres
discontinuities on grids with a finite spatial resolution. All this seems to be quite worrisorr
given that magnetic monopoles do not exist in nature, but in practice correct results se
to be produced by numerical schemes on discrete grids. How is this possible? As note
Linde [31], discretization oV - B near shocks has a “telescoping” property, which can b
described as follows. Negative and positve B peaks cancel each other out, such tha
on a slightly more global scale, magnetic monopoles are not present. This alternatiot
positive and negativ¥ - B peaks can be seen clearly on Fig. 13. This is not yet a proof th
the Powell approach produces valid results. Convincing support for the validity of Powel
source term approach is given by the results of our grid convergence studies. Table 1 st
that the measure of flux conservatiBnconverges faster than the state variables, and tht
faster than predicted. Figure 12 shows that the numerical solution satisfies the MHD
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FIG. 14. The bow shock flow. Grid convergence of the stagnation point values. Ten logarithm of the relat
errors of the stagnation point density and pressure, in function of the grid resolution. The density converges
a = —0.70 (first-order scheme, dotted, triangles), and wita —1.01 (second-order scheme, dashed, triangles).
The pressure converges with= —0.82 (first-order scheme, dash-dotted, asterisks) andanith—0.52 (second-
order scheme, dash-dot-dot-dotted, asterisks).

relations up to high precision. Most convincingly, Fig. 11 shows clearly that the magne
flux through flux tubes which may contain fast shocks is conserved and that flux conserva
converges with the theoretically predicted order.

For the bow shock flow, we can investigate grid convergence of the solution at
stagnation point. On the stagnation streamline, the RH relations lead to an analytical solL
for the state variables downstream of the shock, and using the conservagiandifis on
the stagnation streamline, the exact analytical solution of the stagnation point quant
in terms of the upstream flow quantities can be obtained [35]. For the inflow values
our bow shock model problemag= 3.61528 andpsiag= 3.61528. Figure 14 shows grid
convergence of the stagnation point values. Although the grid convergence orders are
all close to the theoretical value of one, there is a clear trend of grid convergence to
correct values, and this is a remarkable result, given the well-known problems of m:
finite-volume schemes with “wall-heating” at perfect walls [29].

7. SUMMARY AND CONCLUSION

In this paper we have started out with a brief presentation of the theory of station
characteristics for the class of 2D planar field-aligned MHD flows. We have presented 1
model flows of increasing complexity belonging to this class, and we have investigated
physical properties of these flows using characteristic theory. We have used charactel
theory to formulate grid convergence criteria for flows belonging to this class, and we h:
shown grid convergence for the numerical simulation of the five field-aligned model flo
and for one non-field-aligned model flow withséandardhigh-resolution finite volume
numerical MHD code on structured body-fitted grids.

We did not always obtain grid convergence orders completely consistent with theol
ical expectations. Such degradation of convergence can mostly be attributed to analy
singularities or numerical inaccuracies at boundaries, to complex behavior at discont
ities, and to the distortion of the grid. However, in generaldigeobtain satisfactory grid
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convergence for most properties. The conservation of magnetic and momentum flux in
tubes behaved especially well (see Table 1). All these results give us strong indications
we calculate the physically correct solution to the flow problems and that we improve f
accuracy by refining the grid. It is important to establish such formal accuracy tests

MHD simulations, and this is certainly not trivial given the lack of analytical solutions fo
2D MHD problems. More advanced schemes and boundary treatment may lead to n
completely consistent grid convergence results, and throughout this paper we have indic
in which direction improvement can be expected.

We have investigated by formal grid convergence studies of magnetic flux conservat
and other flow quantities whether the Powell source term approach to contrgl tBe
constraint leads to correct results for this class of flows. Our grid convergence results sl
clearly that this method leads to correct solutions for the transonic problems we con:
ered, although it remains difficult to grasp all the subtle details of how this correct res
is obtained. It may also be that for some problems, for which the conservation of magn
flux up to very high accuracy is crucial, the source term technique would turn out to
insufficient. Recently Toth [55] has given an example of a time-dependent flow (a strc
Riemann problem) for which the source term approach does not seem to work satisfactc

Although the model problems presented in this article exhibit a variety of flow feature
they all belong to the sub-class of stationary planar 2D MHD flows. Stationary flow h
important applications, and in this paper we have taken a first step to prove grid converge
for model problems belonging to this important sub-class of flows. It would certainly |
useful to develop more general test problems allowing for grid convergence studies, wh
for instance, would also investigate the accuracy of time integration. Self-similar MH
flows are probably good candidates for this. Fully 3D test problems should be considere
well. In 3D, when the magnetic field is not aligned to the flow, many of the invariants us
in this paper to prove grid convergence cease to be invariant [46], so it is to be expected
it will be more difficult to formulate 3D MHD model flow problems which allow for grid
convergence study. For the time being, however, we can reassure ourselves by realizing
many 3D algorithms are straight extensions of their 2D counterparts, so it can be expe:
that the 3D algorithms perform similarly to the 2D algorithms in terms of accuracy.
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