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Five model flows of increasing complexity belonging to the class of stationary
two-dimensional planar field-aligned magnetohydrodynamic (MHD) flows are pre-
sented which are well suited to the quantitative evaluation of MHD codes. The
physical properties of these five flows are investigated using characteristic theory.
Grid convergence criteria for flows belonging to this class are derived from charac-
teristic theory, and grid convergence is demonstrated for the numerical simulation
of the five model flows with a standard high-resolution finite volume numerical
MHD code on structured body-fitted grids. In addition, one model flow is presented
which is not field-aligned, and it is discussed how grid convergence can be studied
for this flow. By formal grid convergence studies of magnetic flux conservation and
other flow quantities, it is investigated whether the Powell source term approach to
controlling the∇ · B constraint leads to correct results for the class of flows under
consideration. c© 2001 Academic Press
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1. INTRODUCTION

In the past decade there have been many new and interesting developments in the field of
numerical methods for the simulation of non-linear magnetohydrodynamic (MHD) flows
with shocks [1, 4, 5, 8, 12–14, 17, 31, 34, 36, 39–41, 49, 50, 54, 55, 58]. These developments
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have been driven by the increased need for robust and accurate simulation methods to tackle
problems in astrophysics [29] and laboratory plasma physics [6].

Standard techniques from computational fluid dynamics (CFD) have been adapted for
MHD applications. High-resolution finite-volume Godunov schemes with Riemann solvers
on structured grids have been developed [1, 4, 8, 12–14, 17, 31, 34, 36, 39–41, 49, 50, 55,
58] and have been shown to perform well in a wide range of applications (e.g., [21, 29, 32,
45, 48]). More recently, unstructured grid codes have been presented as well [5, 11, 52].

1.1. Quantitative Measures of Numerical Accuracy

Thorough testing of new numerical schemes is an essential part of the development
process. Most articles on new algorithmic techniques include some kind of validation in
terms of model problems. However, a vast majority of the model problems presented in the
MHD literature only allow very qualitative comparison and validation. Conclusions on the
validity and accuracy of numerical approaches are often based solely on visual comparison
of contour plots. It may be useful to determine if various numerical schemes can “capture”
all the different MHD wave features properly. A new two-dimensional (2D) test problem
which seems to be appropriate for this kind of comparison because it involves interacting
fast and intermediate shocks and tangential discontinuities has recently been described by
De Stercket al. [45]. It is clear, however, that more quantitative measures are desirable to
establish more basic formal proofs of accuracy of a numerical code, for example in terms
of convergence with a certain order towards the (analytical) exact solution as a function of
grid resolution (grid convergenceof the spatial discretization). The lack of model problems
that allow for such an accuracy study is often attributed to the unavailability of analytical
solutions to the MHD equations, especially in two or three space dimensions.

The aim of the present paper is to contribute to a remedy for the lack of model problems
which allow formal study of the basic accuracy of MHD codes. We provide a set of five
stationary planar (Bz ≡ 0 andvz ≡ 0) 2D field-aligned (v‖B) transonic MHD model flows
which allow to study grid convergence of numerical codes. Additionally we present one
model problem which is not field-aligned. We will show grid convergence for the numerical
simulation of these flows with astandardhigh-resolution finite-volume numerical MHD
code on structured body-fitted grids. Except for one of the five presented field-aligned
problems, the full analytical solution is not known, but we show that grid convergence studies
can be based on invariant properties following from the rigorously derived characteristic
theory [10, 24, 46] of planar stationary field-aligned MHD flow. Characteristic analysis
reveals basic invariants of the flow, and these invariants can be used to test grid convergence
as they lead to analytical solutions for some combinations of the flow variables if the
incoming flow is uniform. Characteristic analysis also provides clear insight into the physical
properties of the model flows and into the stationary wave features present in the flows.
We present five field-aligned model flows, with increasing complexity in terms of wave
features present in the flow: a fully smooth radial outflow, an expanding tube flow with a
weak discontinuity, a wedge flow with a plane fast shock, a bow shock flow with a curved
fast shock, and a nozzle flow with reflecting fast shocks. These model flows describe various
nonlinear wave phenomena in their most basic form. The corresponding Euler flows have
been described and used many times, but in the numerical MHD literature these basic flows
have not received much attention. We will show that this set of model problems is well
suited to testing grid convergence of MHD codes and to studying in detail how the behavior
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of numerical schemes changes when increasingly complex wave structures are present in
the flow. Although these five model problems exhibit quite a variety of flow features, they
all belong to the sub-class of stationary planar 2D field-aligned MHD flows. Stationary flow
has important applications [19–21, 30, 32, 45, 51] and we show [46] that any stationary 2D
problem where ideal conducting wall boundary conditions are present automatically leads
to a solution where the magnetic field is aligned to the velocity field in the whole simulation
domain. Hence the class of stationary field-aligned flow is an important class of MHD flows.
One could even argue that 2D stationary flow problems in a finite domain with the magnetic
field not aligned to the plasma flow are rare [19, 23, 30]. It is hard to define the boundary
conditions consistently in that case. However, it is important to test MHD codes also for
non-field-aligned flow. Therefore we include one model problem for which the magnetic
field is not aligned to the plasma flow. This model flow is constructed in a special way; the
fields are actually aligned in a rotating frame, but not in the rest frame. The analysis of this
model problem is substantially different from the analysis of the field-aligned problems. It
would certainly be useful to develop more general test problems allowing grid convergence
studies, which, for instance, would also investigate the accuracy of time integration, but in
this paper we take a first step and restrict ourselves to model problems belonging to the
important sub-class of stationary planar flows in 2D.

Although most model problems presented in the MHD literature only allow qualitative
comparison and cannot be used for formal accuracy testing, a very limited number of (mostly
one-dimensional (1D)) test problems which allow some degree of formal accuracy testing
have been described. Stoneet al. [49, 50] present 1D model problems including stellar wind
flows and obtain grid convergence which is satisfactory for most cases. Ryuet al. [41] show
that the numerical dissipation of their scheme vanishes in second order as a function of grid
resolution. Vanden Abeele and Deconinck [1] show how the conservation of magnetic flux
in a flux tube can be used as a measure of improved accuracy as a function of grid resolution.
Barth [5] obtains optimal grid convergence for the∇ · B constraint in a continuous Prandtl–
Meyer flow with added magnetic field. The most interesting approach to grid convergence
studies of MHD codes to date can probably be found in Linde’s Ph.D. thesis [31, 36].
This author describes briefly a wedge flow and a stellar wind flow and obtains satisfactory
grid convergence. Although we have made use of some of the ideas presented in the above
listed earlier articles, the variety of problems presented in this paper and especially the firm
grounding of convergence study on the rigorous and complete characteristic analysis of the
model flows are new compared to these earlier approaches to grid convergence study of
MHD codes.

1.2. Strategies for Preservation of the∇ · B = 0 Condition

The numerical enforcement of the∇ · B constraint is an important and much debated
problem for numerical MHD codes. The∇ · B condition is an initial condition, which is
exactly preserved in time by the partial differential equations (PDEs) of MHD, but which
is not always exactly preserved after discretization of the equations (see, e.g., [36]) which
may lead to numerical instability. Various strategies have been proposed to deal with the
∇ · B constraint. We do not intend to give a full discussion of this subtle subject here, but
we find it useful to give a brief overview of the various approaches to this problem. The
equations can be formulated in terms of a vector potential, which implies divergence-free
magnetic fields. This approach is not always very practical and leads to difficulties near
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sharp gradients because of the presence of second-order derivatives in the equations (see,
e.g., [50]). Staggered grid approaches store different state variables on different positions
of the grid, in such a way that the discrete time evolution of the magnetic field automati-
cally conserves the divergence-free condition (e.g., [3, 14–16, 50, 55]). They often require,
however, extra interpolations to be performed, and the interpolated magnetic field is not
necessarily divergence-free. Subtle approaches which are intended to overcome these inter-
polation problems have been proposed recently [3, 14, 55]. Projection scheme approaches
solve an elliptic equation in every time-step and add a computed correction to the magnetic
fields to achieve divergence-free fields [7, 41, 55, 58]. Solution of the elliptic equation may
take considerable computing time, and spurious oscillations can also be generated in super-
sonic regions that should not be affected because theoretically they cannot be reached by
wave perturbations in the hyperbolic system. Recently a new approach has been presented
by Powellet al. [36]. These authors propose to add a source term proportional to∇ · B to
the conservative form of the MHD equations. Discretization of this Galilean-invariant sym-
metrizable form of the equations with a source term [5, 18, 36] leads to a stable numerical
scheme. The∇ · B constraint is not enforced strongly and∇ · B can sometimes be substan-
tially different from zero, but because of the presence of the source terms the dynamical
effect of the∇ · B errors is largely neutralized and∇ · B errors can be shown to be advected
away with the plasma flow. Although this approach seems to work well [5, 11, 31, 32, 36,
38, 44, 46, 55] and has several conceptual advantages over other techniques because of its
simplicity and consistency with the hyperbolic nature of the MHD equations, not much can
be found in the literature about rigorous validation of this approach, and consequently it
is still heavily debated. In this paper we employ the Powell source term technique and we
investigate by formal grid convergence studies of magnetic flux conservation and other flow
quantities whether this approach is valid, at least for the class of stationary flow problems
that we consider. Linde [31] and Barth [5] carry out a similar study and confirm the validity
of the Powell source term approach, but their investigation is less complete and systematic
than ours and is carried out on adaptively refined Cartesian grids [31] or on unstructured
grids [5], and not on the body-fitted structured grids discussed in this paper. It may be that
for some problems, for which the conservation of magnetic flux up to very high accuracy is
crucial, the source term technique would turn out to be insufficient. Recently Toth [55] has
given an example of a time-dependent strong Riemann problem flow for which the source
term approach does not seem to work satisfactorily.

1.3. Philosophy and Organization of the Paper

The analysis of MHD model flows in terms of stationary characteristics and the discus-
sion of grid convergence methodology and results are the main topics treated in the present
forum. We choose to make the paper self-contained and easily accessible by including brief
reviews of the characteristic theory of stationary MHD and of the numerical technique we
use for the simulations. We want to state clearly from the beginning that it is the philosophy
of this paper to illustrate how grid convergence on the whole simulation domain—including
boundaries—can be proved for numerical simulations obtained with a simple,standard, and
general-purpose numerical scheme, with standard boundary conditions, limiting, interpola-
tion, and time integration, with near-uniform grids, and with a simple and robust numerical
flux function. This is an important first step and sets an initial standard of grid convergence
and accuracy. Using the same criteria, it is then possible to evaluate more advanced numer-
ical schemes in a quantitative way. In Csiket al. [11] some of the model flows and grid
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convergence criteria presented in this paper are used to evaluate a new residual distribution
MHD scheme on triangular grids.

This paper is organized as follows. In Section 2 we briefly describe the MHD equations
and the properties of MHD shocks. We present a compact derivation of the characteristic
properties of stationary 2D planar field-aligned MHD flow. Our derivation of the character-
istic properties is based on the Galilean-invariant symmetrizable form of the conservative
MHD equations with a source term [5, 18, 36] and using a matrix approach. In Section 3
we discuss the five stationary 2D planar field-aligned transonic model flows of increasing
complexity. We discuss the flow features present in each flow in terms of stationary char-
acteristics. A non-field-aligned model problem is discussed in Section 4. In Section 5 we
give a brief but complete discussion of thestandardhigh-resolution finite-volume numerical
MHD scheme on structured body-fitted grids. Next we formulate practical grid convergence
criteria based on the invariants revealed by the characteristic analysis. In Section 6 we dis-
cuss the grid convergence results for simulation of the model flows and their implication for
the validity of the Powell source term approach. We formulate our conclusions in Section 7.

2. THE MHD EQUATIONS, MHD DISCONTINUITIES, AND THE THEORY

OF STATIONARY CHARACTERISTICS

2.1. The MHD Equations

The equations of ideal one-fluid MHD in conservative form [36] are given by

∂

∂t


ρ

ρv

B
e

+∇ ·


ρv

ρvv+ I(p+ B · B/2)− BB

Bv− vB
(e+ p+ B · B/2)v− (v · B)B

 = −


0
B
v

v · B

∇ · B. (1)

This equation has to be supplemented with the divergence-free condition∇ · B = 0 as an
initial condition. Here,ρ and p are the plasma density and pressure, respectively,v is the
plasma velocity,B is the magnetic field, and

e= p

γ − 1
+ ρ v · v

2
+ B · B

2
(2)

is the total energy density of the plasma.I is the unity matrix. The magnetic permeability
µ = 1 in our units. We takeγ = 5/3 for the adiabatic index. These equations describe the
conservation of mass, momentum, magnetic field, and energy. For simplicity, we consider
a perfect gas, such that the sound speed is given by

c =
√
γ p/ρ, (3)

and the entropy is given by

s= p/ργ . (4)

The hydrodynamic stagnation enthalpy is defined as

hs ≡ γ

γ − 1

p

ρ
+ 1

2
v2 (5)

and plays a role in the characteristic analysis of field-aligned MHD flow.
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We have written Eq. (1) in a form with a source term proportional to∇ · B on the
right hand side (RHS). This form of the equations, which reduces to the more familiar
physical conservation laws when we set∇ · B = 0, can be useful for certain purposes.
Godunov [5, 18] proved in 1972 that this is the unique form of the MHD equations which
is symmetrizable when∇ · B is non-vanishing. It is a more general form of the MHD
equations, in the sense that this form of the equations remains Galilean-invariant also if
∇ · B 6= 0 [36]. Discretization of this form of the equations is one way to control the∇ · B
constraint in conservative, shock-capturing numerical schemes [36].

The inclusion of this RHS term is also essential for the derivation of the characteristic
theory of stationary 2D MHD in a simple, compact, and systematic procedure using a
matrix approach, as is described in [46], and in Section 2.3 for the special case of planar
field-aligned flow.

2.2. Discontinuities and Rankine–Hugoniot Relations

Contrary to the hydrodynamic equations, which allow for only one wave mode, the
MHD equations allow for three distinct wave modes, the fast magneto-acoustic wave, the
Alfv én wave, and the slow magneto-acoustic wave, with (positive) anisotropic wave speeds
satisfyingcf ≥ cA ≥ cs in standard notation. The ideal MHD equations allow for discontin-
uous solutions, and those discontinuities have to satisfy the MHD Rankine–Hugoniot (RH)
relations [27], which in the shock frame read

F(Ul ) = F(Ur ), (6)

with Ul andUr the left and right state vectors of conserved variables, andF the 1D flux
function which follows from Eq. (1). The MHD flux function (in thex direction) is given
by

F





ρ

ρvx

ρvy
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e




=
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ρvx

ρv2
x + p+ B2/2− B2

x

ρvxvy − Bx By

ρvxvz− Bx Bz

0
Byvx − Bxvy

Bzvx − Bxvz

(e+ p+ B2/2)vx − Bx(v · B)


. (7)

The RH relations basically describe the continuity of the mass, momentum, magnetic field,
and energy fluxes through the discontinuity. Three types of shocks are described by the
MHD RH relations, connecting plasma states which are traditionally labeled from 1 to 4,
with state 1 a super-fast state; state 2 sub-fast but super-Alfv´enic; state 3, sub-Alfv´enic
but super-slow; and state 4, sub-slow [2, 27, 45]. Fast 1–2 MHD shocks refract the mag-
netic field away from the shock normal, intermediate MHD shocks (1–3, 1–4, 2–3, and
2–4) change the sign of the component of the magnetic field which is tangential to the
shock front and thus flip magnetic field lines over the shock normal, and slow 3–4 MHD
shocks refract the magnetic field towards the shock normal. For shocks, there is both a
mass flow through the surface of discontinuity, and an increase in the entropys. Contact
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discontinuities, with vanishingvx, but nonzeroBx, have only a jump in density (and en-
tropy). All other quantities are continuous. Tangential discontinuities, with vanishingvx

and Bx, have a jump in density, pressure, and tangential velocity and field. However, the
total pressurep+ B2/2 is continuous. Rotational discontinuities rotate the magnetic field
around the normal of the discontinuity surface over an arbitrary angle, without a jump in
entropy.

There is general agreement that fast and slow shocks can exist physically, but the subject
of the physical admissibility of intermediate MHD shocks and rotational discontinuities has
a long history and is still very much debated. See [34, 45] for an introduction and references.
Recently intermediate shocks have been identified in stationary 2D and 3D MHD bow shock
flows [45, 47].

2.3. Characteristic Analysis of Stationary Field-Aligned MHD Flow

Results on characteristic theory of the MHD equations can be found scattered throughout
the literature [10, 24]. We have chosen, however, to make this paper self-contained by
providing a compact derivation of the characteristic theory for the sub-class of stationary
2D planar field-aligned MHD flows [22, 24, 25]. This brief derivation serves to introduce the
reader who is unfamiliar with the theory of characteristics to the concepts, nomenclature, and
notation that is used further on in the paper. Our derivation of the characteristic properties
is based on the Galilean-invariant symmetrizable form of the conservative MHD equations
with a source term [5, 18, 36] and using a matrix approach [24]. A more complete derivation
of the characteristic properties of MHD using this compact matrix approach (not restricted
to the special case of stationary planar field-aligned flow), can be found in De Stercket al.
[46].

First we prove that if the magnetic field and the velocity field are aligned at one point of
a stationary planar 2D MHD flow, then the magnetic field is aligned to the velocity field
everywhere. The classical form of the induction equation reads∂B/∂t = −∇ × E. Thus
∂B/∂t = −∇ × E = 0 leads to∂Ez/∂x = ∂Ez/∂y = 0. This means thatEz, which is given
by Ez = −v× B in planar ideal MHD, is a constant over the wholexy plane. This is also
true when discontinuities are present in the flow, as the tangential component of the electric
field is continuous at discontinuities [27]. Ifv‖B in some point, which implies thatEz = 0
there, thenEz = 0 everywhere, which implies that the magnetic field is aligned to the
velocity field everywhere. This property is a consequence of the fact that the magnetic field
is frozen into the plasma flow for an ideal MHD plasma [27]. For instance, if a stationary
2D flow problem contains a perfectly conducting wall (where the magnetic field and the
velocity field have to be aligned to the wall), then the magnetic field will be aligned to the
velocity field at every point of the flow. The concept of stationary field-aligned flow is thus
well defined and establishes an important class of stationary MHD flows [19, 46].

We rewrite Eq. (1) with∂/∂t ≡ 0, Bz ≡ 0, andvz ≡ 0 (planar flow) in terms of the
primitive variablesW = (ρ, vx, vy, Bx, By, p) and introduce the variableα by takingB =
αv. The steady MHD equations for planar field-aligned flow then reduce to a 5× 5 system
which can be written in quasi-linear form,

A(W) · ∂W
∂x
+ B(W) · ∂W

∂y
= 0, (8)
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with W = (ρ, vx, vy, α, p), and matrices

A =



vx ρ 0 0 0

0 vx α2vy/ρ αv2
y

/
ρ 1/ρ

0 0 (1− α2/ρ)vx −αvxvy/ρ 0

0 α 0 vx 0

0 c2ρ 0 0 vx


(9)

and

B =



vy 0 ρ 0 0

0 (1− α2/ρ)vy 0 −αvxvy/ρ 0

0 α2vx/ρ vy αv2
x

/
ρ 1/ρ

0 0 α vy 0

0 0 c2ρ 0 vy


. (10)

The characteristic properties of this system of equations can be derived by analyzing the
equations in the form

∂W
∂x
+ A−1 · B · ∂W

∂y
= 0. (11)

The eigenvalues of the matrixC ≡ A−1 · B determine the type (hyperbolic or elliptic) of
the five separate characteristic fields of the system. Hyperbolicity depends on the value of
the state variableW. A characteristic field is hyperbolic if its associated eigenvalue is real
and thus defines a real characteristic direction in thexy plane. For those real characteristic
fields, Riemann invariants (RIs) may exist which describe quantities which are conserved on
their associated characteristics. Those RIs can be found by analysis of the left eigenvectors
of matrixC. When a characteristic field is elliptic complex eigenvalues are obtained. More
information on these concepts and this methodology can be found in [9, 10, 46].

For purposes of comparison, we repeat here the basic results for the characteristic proper-
ties of stationary planar hydrodynamic (Euler) flow, with which the reader may be familiar
[9, 10]. In this case the state vector is given byW = (ρ, vx, vy, p), and there are four char-
acteristic fields. The streamlines are twofold-degenerate characteristics and the entropy and
the stagnation enthalpy are the associated RIs. The equations are fully hyperbolic when the
flow is supersonic, and in supersonic regions theMach linesare characteristics of the equa-
tions which exist in real space, making equal angles (Mach angles) with the streamlines.
For subsonic flow, the Mach lines do not exist and the associated characteristic fields are
elliptic.

Analysis of Eq. (11) leads to similar results for the characteristic properties of stationary
field-aligned MHD flow.

The characteristic condition det(C− λl) = 0 can be factored in terms of the variable

v2
⊥ =

(−vy + vxλ)
2

1+ λ2
, (12)
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which represents the square of the velocity component perpendicular to the characteristic, as
the direction of the characteristic is given bydy/dx = λ. This factorization leads to the roots

v2
⊥1 = c2(1− α2/ρ)+ v2α2/ρ and v3

⊥2 = 0. (13)

The equation forv⊥2 always has three real solutions,λ3,4,5 = vy/vx, meaning that the
streamlines are threefold degenerate characteristics. The corresponding left eigenvectors
are

L3 = (−c2, 0, 0, 0, 1), L4 = (−α/ρ, 0, 0, 1, 0), and

L5 = (c2/(ρvy), vx/vy, 1, 0, 0), (14)

and can be used to derive the Riemann invariants

χ3 = s, χ4 = ρ/α, and χ5 = hs. (15)

For instance, the condition thatL3 · dW = 0 in the direction of the characteristic with
slopevy/vx can be written asL3 · (dρ, dvx, dvy, dα, dp) = −c2dρ + dp= 0. This leads
to ds= 0, because it follows from Eq. (4) thatds= dp/ργ − γ p/ργ+1dρ = (−c2dρ +
dp)/ργ . This means that the entropys is a RI. The entropy,ρ/α, and the stagnation enthalpy
are thus conserved on a streamline in continuous flow. It can be derived from the MHD RH
jump conditions (6) that the entropy is discontinuous when a streamline crosses a shock.
However, the stagnation enthalpy andρ/α are conserved over a shock for field-aligned flow.

The solutions of the equation forv⊥1 are

λ1,2 = ρvxvy ±
√
(v2− c2)(α2− ρ)(c2(α2− ρ)− v2α2)

ρ
(
c2− v2

x

)− α2(c2− v2)
. (16)

If the factor under the square root sign is positive, then these eigenvalues are real, and the
equations are hyperbolic [19, 22, 24, 25, 46]. This factor changes sign three times, viz.,
when the square of the velocity equals

v2 = c2
A, v2 = c2, and v2 = c2

cusp. (17)

The cusp velocity is defined asc2
cusp= (c2c2

A)/(c
2+ c2

A) and is the velocity of the slow wave
cusp in the MHD Friedrichs diagram [22, 24]. Note that we definecA as the Alfvén speed in
the direction of the magnetic field in the case of field-aligned flow. This leads to a division
of the parameter space into elliptic and hyperbolic regions, as depicted in Fig. 1, for high

FIG. 1. Elliptic and hyperbolic regions in parameter space for steady planar field-aligned MHD. The top line
corresponds toβ∗ > 1 and shows, asv2 decreases, a division in a fast hyperbolic region (Hf1), an elliptic region
between the fast and the slow hyperbolic regions (Efs1), a slow hyperbolic region (Hs1), and an elliptic region
below the cusp speed (Ec1). The bottom line shows a similar division forβ∗ < 1. Forβ∗ = 1, c2 = c2

A.
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and lowβ∗, where the parameterβ∗ is defined asβ∗ = p/(B2/γ ) = c2/c2
A = M2

A/M2,
with the sonic and Alfv´enic Mach numbers defined asM = v/c andMA = v/cA.

The local geometry of streamlines andxy characteristics for the case of planar steady
field-aligned MHD in hyperbolic regions is very similar to the Euler case. The streamline is
a threefold degenerate characteristic, and there are two additional families of characteristics
(generalized Mach lines[10, 9]) which make equal anglesψ with the streamline. These
characteristics can be of the slow or fast type, depending on which hyperbolic regime the
parameters are in (Hf or Hs of Fig. 1).

We are now ready to use this characteristic theory for the analysis of the physical prop-
erties of five 2D planar field-aligned MHD model flows of increasing complexity in the
next section. In Section 5.6 we use this characteristic theory for the formulation of grid
convergence criteria for 2D MHD flows belonging to the class of planar field-aligned flows.
In Section 6 these criteria are used to study the grid convergence of the numerical simulation
of the five field-aligned model flows with our MHD scheme.

3. PHYSICAL ANALYSIS OF FIELD-ALIGNED MODEL FLOWS IN TERMS

OF STATIONARY CHARACTERISTICS

In this section we present five model flows of increasing complexity belonging to the class
of stationary planar field-aligned MHD flow. We analyze the flows and the stationary wave
structures present in terms of stationary characteristics. The figures shown in this section
are actual simulation results obtained with our numerical MHD code using a second-order
scheme, but we defer discussion of the numerical aspects of the simulations to Sections 5
and 6.

3.1. Cylindrical Expansion Flow

The first model flow (Fig. 2) is a stationary cylindrical expansion flow in the domain
(r ∈ [1, 2], θ ∈ [0◦, 30◦]). A uniform superfast radial inflow with radial magnetic field is

FIG. 2. The cylindrical expansion flow (70× 70 grid). Density contours (thin solid) and streamlines (thin
dotted) are shown. The streamlines are also magnetic field lines. The thick solid lines represent simulation domain
boundaries with ideal wall symmetry. The flow is hyperbolic in the whole simulation domain. Two families of fast
characteristics (thick solid) make equal angles with the streamlines. The flow is smooth in the whole simulation
domain.
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imposed at ther = 1 boundary, withρ = 1, p = 1, vr = 3, andBr = 1. The sonic and
Alfv énic inflow Mach numbers are thusM = 2

√
3/
√

5 andMA = 3. The plasma is allowed
to flow out freely atr = 2. For r > 1, a stationary completely smooth radial expansion
profile with variables only changing as a function ofr results. This flow is thus strictly
speaking a 1D flow.

In Fig. 2 and the subsequent figures, density contours are shown as thin solid lines,
and streamlines as thin dotted lines. The streamlines are also magnetic field lines. The
streamlines are threefold-degenerate characteristics withs, hs, andρ/α as associated RIs.
The thick solid lines represent simulation domain boundaries with ideal wall symmetry.
Two families of fast characteristics (thick solid) make equal angles with the streamlines in
hyperbolic regions.

As the inflow in Fig. 2 is uniform and every streamline thus carries the same values
for the RIss, hs, andρ/α, those RIs are global invariants over the whole flow domain.
∇ · B = 0 andBr (1) = 1 imply thatBr (r ) = 1/r . The four state variablesρ, p, Br , andvr

can thus be determined as functions ofr from Br (r ) = 1/r and the three global invariants,
which establishes the exact analytical solution of this flow problem. The flow is hyperbolic
Hf1 (Fig. 1) everywhere, so the two (generalized) Mach characteristics exist. This flow is
smooth everywhere, and this is the property which distinguishes it from the model flows
to be presented next, which contain increasingly complex (weakly) discontinuous flow
features. This flow is related to the stellar outflow problems discussed in [26, 31, 42, 49,
50]. By giving the flow a rotational component at the inflow boundary, we obtain a non-
field-aligned model problem describing radial outflow from a rotating object [26, 42]. This
rotating outflow problem is described and analyzed in Section 4.

3.2. Expanding Tube Flow

In Fig. 3 we shows a stationary expanding tube flow in the domain(x ∈ [0, 1], y ∈
[y0(x), 1]), with y0(x) = 0 for x ∈ [0, 0.3] and y0(x) = −1+ cos(π/4 ∗ (x − 0.3)) for
x ∈ [0.3, 1]. A uniform superfast horizontal inflow with horizontal magnetic field is imposed
at thex = 0 boundary, withρ = 1, p = 1, vx = 8, andBx = 4. The sonic and Alfv´enic
inflow Mach numbers are thusM = 8

√
3/
√

5 andMA = 2. The plasma is allowed to flow
out freely atx = 1, where the flow remains superfast. Aty = y0(x) andy = 1 we impose
ideal wall symmetry conditions. A stationary expanding flow results, as shown by the density
contours of Fig. 3.

The flow is hyperbolic Hf2 (Fig. 1) in the whole simulation domain, such that two families
of fast characteristics exist. As long as the lower wall is straight, the flow is uniform. When
the wall starts to curve(x = 0.3), this acts as a (wavelike) perturbation, which can only
propagate downstream along the characteristics. This means that the flow is non-uniform
only below the upward fast characteristic which originates from the lower boundary at
(x = 0.3) with an angle ofθ = 31.276◦, as can be calculated from Eq. (16). This fast
characteristic thus separates a uniform flow region from a perturbed region, and is thus
necessarily aweak discontinuity[9, 10]. At a weak discontinuity, the spatial derivative of
the flow variables in a direction perpendicular to the weak discontinuity characteristic is
discontinuous. However, the flow variables themselves are continuous, and the entropy is
thus also conserved on streamlines across weak discontinuities. A weak discontinuity thus
detaches from the lower wall where the tube starts to expand. This weak discontinuity is a
fast characteristic, and is followed by a simple wave [9, 10, 46] rarefaction region.
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FIG. 3. The expanding tube flow (75× 125 grid). The flow is hyperbolic in the whole simulation domain.
A weak discontinuity detaches from the lower wall where the tube starts to expand. This weak discontinuity is a
fast characteristic and is followed by a simple wave rarefaction region. One family of characteristics consists of
straight lines in the simple wave region. The simple wave is not centered.

This rarefaction is called a (stationary) simple wave because it carries a variation in only
one MHD wave family. It is a property of simple waves that one family of characteristics
consists of straight lines and that the flow variables are constant along these characteristics,
so that the characteristics are parallel to the contour lines of flow variables, e.g., the density,
as can be seen in Fig. 3. In the present flow, these straight line characteristics do not converge
at one point, so this simple wave is not centered. Centered simple waves exist in rarefaction
flows around sharp corners, like the well-known Prandtl–Meyer flow [5]. Such a sharp
corner is a geometrical singularity in the boundary and this can complicate grid convergence
studies, as is explained in the next section. For this reason, we have chosen to present model
flows with smooth boundaries in this paper. A simple wave, also if it is non-centered, can be
described mathematically as a function of only one spatial parameter, so strictly speaking
this flow is still 1D. As the inflow is uniform, every streamline throughout the whole domain
carries the same values for RIshs andρ/α, and also fors, as the flow does not contain
strong discontinuities. These RIs are thus global invariants over the whole flow domain.

This flow contains a weak discontinuity, and this is the property which distinguishes it
from the fully smooth model flow discussed in Section 3.1.

3.3. Wedge Flow

Figure 4 shows a stationary wedge flow in the domain(x ∈ [0, 1], y ∈ [y0(x), 1.5]). The
lower simulation domain boundary has the form of a wedge with angleθ = 30◦.

A uniform superfast horizontal inflow with horizontal magnetic field is imposed at the
x = 0 boundary, withρ = 1, p = 1, vx = 8, andBx = 4. The sonic and Alfv´enic inflow
Mach numbers are thusM = 8

√
3/
√

5 andMA = 2. At y = y0(x) andy = 1 we impose
ideal wall symmetry conditions. The wedge geometry causes the formation of a fast MHD
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FIG. 4. The wedge flow (100× 200 grid). The flow is hyperbolic in the whole simulation domain. A plane
fast MHD shock is formed where characteristics start to intersect near the lower wall. This discontinuity stretches
out upwards in a straight line.

shock, as shown by the accumulation of density contours in a solid line. At the shock, the
magnetic field lines are refracted away from the shock normal in going from upstream to
downstream, which shows that this is a fast MHD shock. The plasma is allowed to flow out
freely atx = 1, where the (normal) flow is superfast.

As the inflow is uniform, every streamline throughout the whole domain carries the same
values forhs andρ/α, but not fors, as the flow does contain a strong discontinuity where
the entropy increases discontinuously. Only the RIshs andρ/α are thus global invariants
over the whole flow domain. The flow is hyperbolic Hf2 (Fig. 1) everywhere, so the two
(generalized) Mach characteristics exist.

We have to remark that the two straight “legs” of the wedge could be connected atx = 0.3,
but that we have again chosen a smooth boundary with the wedge corner smoothed out by a
circular profile. The lower boundary is described byy0(x) = 0 for x ∈ [0, 0.2] andy0(x) =
tan(30◦) ∗ (x − 0.3) for x ∈ [0.3+ 0.1 ∗ cos(30◦), 1]. A segment of a circle with cen-
ter point(0.2, 0.1 ∗ (1+ cos(30◦))/ sin(30◦)) and radiusr = 0.1 ∗ (1+ cos(30◦))sin(30◦),
which is tangent to the two “legs” of the wedge, then replaces the corner singularity of the
wedge with a smooth profile. Close to the lower boundary our wedge flow with smooth
boundaries is thus slightly different from a wedge flow with a sharp corner, and one can
see a small compression wave region with converging characteristics in the corner region
on Fig. 4 [53], but above the point where those characteristics converge and the shock is
formed, this flow is identical to the wedge flow with a sharp corner.

The wedge flow described in this section contains a plane strong discontinuity, and this
is the property which distinguishes it from the flows discussed earlier. MHD wedge flows
have also been discussed in [31].
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FIG. 5. The bow shock flow (80× 80 grid). A fast MHD bow shock is formed in front of the cylindrical
obstacle. The flow is hyperbolic in front of this bow shock, and also behind the shock front sufficiently far upward
from the horizontalx-axis. The region behind the shock front and close to the horizontalx-axis is an elliptic
region, in which real fast characteristics do not exist. This elliptic region is separated from the upward hyperbolic
region by theM = 1 contour (dashed).

3.4. Bow Shock Flow

In Fig. 5 we show a stationary bow shock flow in the domain(r ∈ [r0(θ), 0.125], θ ∈
[90◦, 180◦]), with r0(θ) = 0.75− 0.45(θ − 90)/90. The bow shock is formed by the ob-
struction of a uniform incoming flow by a rigid perfectly conducting circular cylinder with
r = 0.125. A uniform superfast horizontal inflow with horizontal magnetic field is imposed
at ther = r0 boundary withρ = 1, p = 0.2, vx = 2, andBx = 0.1. The sonic and Alfv´enic
inflow Mach numbers are thusM = 2

√
3 andMA = 20. At y = 0 andr = 0.125 we impose

ideal wall symmetry conditions. The plasma is allowed to flow out freely atx = 0, where
the (normal) flow is superfast. A curved fast MHD bow shock is formed, as shown by the
accumulation of density contours. At the shock, the magnetic field lines are refracted away
from the shock normal in going from upstream to downstream, which shows that this is a
fast MHD shock.

As the inflow is uniform, every streamline throughout the whole domain carries the same
values forhs andρ/α, but not fors as the flow does contain a strong discontinuity. Only
the RIshs andρ/α are thus global invariants over the whole flow domain. The flow is
hyperbolic Hf1 (Fig. 1) in the upstream region and in the part of the downstream region
above the dashed line(v2 = c2 or M = 1 contour). In these hyperbolic regions the two
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FIG. 6. The nozzle flow (480× 160 grid). The flow is hyperbolic in the whole simulation domain. A fast
MHD shock is formed where characteristics start to intersect. This shock is reflected by the lower wall, by the
upper wall, and again by the lower wall before it leaves the simulation domain. Throughout these reflections, the
shock front remains nearly plane and the shock remains of the fast type.

(generalized) Mach characteristics exist. The downstream region below theM = 1 contour
is of elliptic type Efs1, and real characteristics do not exist in this region.

The bow shock flow described in this section contains a curved strong discontinuity and
an elliptic region, and these properties distinguish it from the flows discussed earlier. MHD
bow shock flows have been discussed before [1, 5, 45, 46, 54]. De Stercket al. [46] describe
the characteristic analysis of a complex MHD bow shock flow which contains interacting
fast and intermediate shocks and tangential discontinuities and several alternating regions
of the different hyperbolic and elliptic types of Fig. 1.

3.5. Nozzle Flow

In Fig. 6 we show a stationary nozzle flow in the domain(x ∈ [0, 3], y ∈ [0, y1(x)]), with
y1(x) = 1− 0.3 ∗ sin2(π/3 ∗ x). A uniform superfast horizontal inflow with horizontal
magnetic field is imposed at thex = 0 boundary withρ = 1, p = 1, vx = 3.5, andBx = 2.
The sonic and Alfv´enic inflow Mach numbers are thusM = 3.5

√
3/
√

5 andMA = 1.75.
At y = 0 andy = y1 we impose ideal wall symmetry conditions. The plasma is allowed to
flow out freely atx = 3, where the (normal) flow is superfast. A fast MHD shock is formed
near the upper wall because of the curvature of this wall, as shown by the accumulation of
density contours. At the shock, the magnetic field lines are refracted away from the shock
normal in going from upstream to downstream, which shows that this is a fast MHD shock.
This shock reflects several times from the rigid ideal wallsy = 0 andy = y1(x).

As the inflow is uniform, every streamline throughout the whole domain carries the same
values forhs andρ/α, but not fors as the flow does contain strong discontinuities. Only
the RIshs andρ/α are thus global invariants over the whole flow domain. The flow is
hyperbolic Hf2 (Fig. 1) everywhere, and two (generalized) Mach characteristics exist.

The nozzle flow described in this section contains strong discontinuities which are re-
flected by ideal walls, which distinguishes it from the flows discussed earlier. MHD nozzle
flows have been discussed before in [1].

4. PHYSICAL ANALYSIS OF A ROTATING OUTFLOW WITH THE FIELD

NOT ALIGNED TO THE FLOW

In this section we describe and analyze a model problem describing radial outflow from
a rotating cylindrical object. We start from the cylindrical expansion flow described in
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FIG. 7. The rotating outflow problem (70× 70 grid). Density contours (thin solid), streamlines (dashed), and
magnetic field lines (dotted) are shown. The magnetic and velocity fields are not aligned. The flow is smooth in
the whole simulation domain.

Section 3.1. We take the same inflow conditions and keepγ = 5/3, but add a rotational
velocity componentvθ = 1 in the counter-clockwise direction. The magnetic field remains
radial at the boundaryr = 1. We extend the simulation domain up tor = 6 andθ = 360◦.
The resulting smooth stationary flow is show in Fig. 7. The magnetic field lines (dotted)
are clearly not aligned with the streamlines (dashed). If we transform to a coordinate frame
rotating rigidly around the origin with angular velocityÄ = −1, the velocity becomes
radial, and thus parallel to the magnetic field (which is not changed by the coordinate
transformation). It can be proved that in this rotating frame the magnetic field and the
velocity field are aligned everywhere, if they are aligned at the boundary and if the flow
is stationary. This is again just a consequence of the MHD frozen-in condition. In the rest
frame, however, the flow is not field-aligned, as can be seen in Fig. 7. This flow can thus
be interpreted as a field-aligned radial outflow from a rotating object and is related to flows
studied in the context of stellar winds [26, 42].

We want to study the grid convergence behavior of this non-field-aligned flow, but cannot
directly use the characteristic invariants derived for field-aligned flow. Fortunately, related
invariants can be found for this effectively 1D rotating flow [26, 42], as is briefly reviewed
next.

The rotating outflow is completely specified when the six constantss, fm, fB, Ä, rA, and
h are chosen in

s= p

ργ
,

fm = ρvr r,

fB = Br r, (18)
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(vθ −Är )Br − vr Bθ ≡ Ez ≡ 0,

Är 2
A = r

(
vθ − Br Bθ

ρvr

)
≡ L , and

h = 1

2
v2

r +
1

2
(vθ −Är )2+ γ

γ − 1

p

ρ
− 1

2
Ä2r 2.

Heres is the entropy,fm and fB are the radial momentum flux and magnetic flux,Ä

is the angular speed of the rotating object,rA is theAlfvén radius, andh is theBernoulli
constant. Ez is the electric field in thez direction, andL is the angular momentum density.
The invariants defined in Eq. (18) are used to study grid convergence for the rotating outflow
problem in Section 6.

Following Sakurai [42], we can derive theBernoulli function H(r, ρ),

H(r, ρ) = f 2
m

2ρ2r 2
+ 1

2
r 2

AÄ
2

(
rA/r − r/rA

1− ρ f 2
B

/
f 2
m

)2

+ γ

γ − 1
sργ−1− 1

2
Ä2r 2. (19)

For given constantss, fm, fB, Ä, andrA we can implicitly describe theorbits ρ(r ) as
level curves of the Bernoulli functionH(r, ρ) = h for varying h. Figure 8 shows these
orbits (dotted) for the values ofs, fm, fB,Ä, andrA corresponding to the simulation shown
in Fig. 7. The thick solid orbit corresponds to the value of the Bernoulli constanth of the
simulation. Two other curves of interest are thefast/slow Mach curvedefined by∂H/∂ρ = 0
(thin solid) and thethroat curvedefined by∂H/∂r = 0 (dashed). Orbits are vertical where
they cross the fast/slow Mach curve, and horizontal where they cross the throat curve. The
fast/slow Mach curve and the throat curve cross at anO-type critical point. The other critical
point is located at infinity. This critical point analysis is instructive because it shows that the

FIG. 8. Critical point analysis for the rotating outflow problem. The dotted lines are solution orbits. The
thick solid line is the orbit corresponding to the flow shown in Fig. 7. The thin solid line is the fast/slow critical
curve, and the dashed line is the “throat” curve. There is one finite critical point (of O-type) where these two
curves intersect. The outer radius of the simulation domain has to be chosen smaller than approximatelyr = 30 to
obtain a continuous stationary solution. Indeed, at the point where the orbit and the fast/slow line cross, the flow
becomes subfast. The continuous orbit becomes multi-valued, which means that there is no continuous solution,
but a (non-stationary) shock would be formed.
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outer radius of the simulation domain has to be chosen smaller than approximatelyr = 30 to
obtain a continuous stationary solution. Indeed, at the point where the orbit and the fast/slow
line cross, the flow becomes subfast. The continuous orbit becomes multi-valued, which
means that there is no continuous solution, but a (non-stationary) shock would be formed.
The model problem of Fig. 7 does thus not constitute an example of a smooth outflow in an
infinite domain. In an appropriately chosen finite domain, however, this problem describes
a valid MHD flow with well-defined boundary conditions (the flow remains superfast at the
outer boundary), and is thus perfectly suitable for the purpose of testing a numerical MHD
code through grid convergence study. To conclude, we can remark that this non-field-aligned
model problem is really a very special case. It could be constructed from the cylindrical
expansion flow by rotation because the cylindrical expansion problem has the peculiar
property that the flow, the boundary shapes, and the boundary conditions themselves are
all rotationally invariant. We anticipate that it will be very difficult to find stationary 2D
non-field-aligned model problems without such special symmetries.

5. A FINITE VOLUME NUMERICAL SCHEME

In this section we discuss thestandard2D high-resolution finite-volume numerical MHD
scheme on a structured body-fitted grid for which we investigate grid convergence of the
presented model flows further on in the paper. Our discussion is brief because most of the
numerical techniques have been presented before [e.g., 1, 28, 32, 33, 36, 57] and because
the presentation of this numerical scheme is not the main motivation of this paper. We
intend to give a description which completely specifies our numerical approach, however,
because this establishes the repeatability of our numerical experiments and will facilitate
comparison with other numerical codes [11]. This code has been implemented for use on
massively parallel computers using the MPI message passing library. We describe the 2D
version of the code here, but a 3D version has been implemented as will using basically the
same algorithms [33, 47].

The ideal MHD equations (1) can be written in the following abstract conservation law
form,

∂U
∂t
+∇ · F(U) = S, (20)

with U the vector of state variables which are conserved quantities,F the flux vector, and
S the Powell source term.

5.1. Spatial Discretization

We divide the computational domain into a logically rectangular structured grid of quadri-
laterals. The solution of the flow is sought in thephysicalcells, with indices in the compu-
tational domain ranging from 1 toni for indexi , and from 1 tonj for index j . This physical
domain is surrounded by two layers ofghost cells, which allow for a simple implementa-
tion of boundary conditions (see Section 5.5). The cell interfaces are not constrained to be
parallel to a Cartesian axis, which for instance allows to fit the grid to a curved rigid body.
We integrate Eq. (20) formally over the cell with label(i, j ), and obtain the discretized
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equation

∂Ūi, j

∂t
+ 1/Äi, j

4∑
k=1

F∗k · nklk = 0, (21)

for the time evolution of the average of the state variable over cell(i, j )

Ūi, j =
(∫ ∫

U(x, y, t) dx dy

)/
Äi, j , (22)

which is stored in the center of cell(i, j ). HereÄi, j is the area of cell(i, j ), and the
summation in Eq. (21) extends over the four sides or interfaces of cell(i, j ). F∗k is a
numerical approximation for the flux vector through the interfacek, lk, is the length of
interfacek, andnk is the outward unit vector normal to sidek.

For each interface, we use anumerical flux functionof the form

F∗(Ul ,Ur ) = F(Ul )+ F(Ur )

2
+ D(Ul ,Ur ), (23)

to calculateF∗ = F∗ · n. HereF is the 1D MHD flux function of Eq. (7), andUl andUr are
the state variables to the left and to the right of the interface. The third term,D(Ul ,Ur ), is
in general proportional toUr − Ul . A first-order accurate spatial discretization is obtained
if we take the left and the right state used to calculate the numerical flux to be the cell-
averages to the left and the right of the interface. In this picture, the solution is imagined
piecewise constantin every cell. The third termD(Ul ,Ur ) adds an amount of (numerical)
dissipation appropriate to make the scheme numerically stable. There are many choices for
the exact form of this dissipative term, corresponding to the choice of an (approximate)
Riemann solver. This is discussed in Section 5.4. Second-order spatial accuracy is obtained
by consideringpiecewise-linearvariation in a cell. The values at the cell interface are then
calculated vialinear reconstruction. To discard spurious oscillations at discontinuities, we
use the non-linearminmod slope limiter[28] to determine the slope of the linear reconstruc-
tion, and for robustness reasons we do the second-order reconstruction using the primitive
variablesW. Experience shows that the accuracy at boundaries is improved when the non-
linear limiting is performed on vector components in the coordinate system aligned with
the interface. This simple dimension-by-dimension approach turns out to work well, and
numerical experiments like the ones to be shown further on in this paper show that the
scheme remains close to second-order accurate if the grid is not distorted too much. A more
sophisticated approach would be to do reconstruction using estimates of gradients based on
2D interpolation [5].

5.2. Discretization of the Source Term

We use the following discretization for the source termSi, j in cell (i, j ). ∇ · B is dis-
cretized as

(∇ · B)i, j = 1/Äi, j

4∑
k=1

Bk · nklk, (24)
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with

Bk = (Bl + Br )/2, (25)

the average of the (reconstructed) magnetic fields on the left and the right of the interface.
This discretization of∇ · B is then multiplied with the appropriate cell-averaged state vari-
ables (stored in the center of cell(i, j )) to obtain a discretization for the source term of
Eq. (1). Experience has shown that it is important to use thereconstructedvalues in the
discretization of∇ · B for the second-order scheme, because this seems to result in a more
robust scheme.

5.3. Temporal Discretization

We use explicit Runge–Kutta time integrators. A one-stage scheme is used for the first-
order scheme, and a two-stage scheme for the second-order scheme [32, 33]. The time-step
1t is derived from the CFL-like time-step limitation [33]

1t = cCFL min
i, j

[
Äi, j∑4

k=1 max
(
0,
(
vi, j · nk + c f

k,i, j

))
lk

]
, (26)

with c f
k,i, j the fast MHD wave speed in the directionnk calculated with the cell-averaged

state values stored in cell(i, j ). The constantcCFL has to be chosen smaller than one for the
first-order scheme, and may be chosen slightly larger than one for the second-order scheme.
We usecCFL = 0.8 for all the calculations presented further on in this paper.

We use these general time-accurate integration methods to calculate the stationary flow
solutions to be described further on in this paper. In general, we start from a uniform initial
flow condition and we evolve the flow in time until vanishing of the residualsR shows that
a steady state has been reached. We use the following quantity based on the density residual
to measure the convergence to a steady state at iterationm,

R̄(m) = log

(
cnorm

√√√√(∑i, j

(
Rρi, j (m)

)2

ni n j

))
, (27)

with ni andnj the number of cells in thei and j direction,Rρi, j (m), the density residual in
cell (i, j ), and the normalization constantcnorm chosen in such a way that̄R(0) = 0. We
routinely achieve convergence of 15 orders of magnitude, which means that the residuals
are driven to machine zero. Throughout this article we mean the base-10 logarithm when
we use “log” in convergence measures and on plots.

It would be possible to obtain convergence to a steady state more efficiently, and many
convergence acceleration methods of varying complexity could be tried, ranging from simple
local time-stepping over implicit residual smoothing and multigrid to fully implicit time
integration [33, 54], but simple explicit time integration is sufficient for our study of grid
convergence of the spatial discretization.

5.4. Numerical Flux Functions

Throughout the years, many interesting MHD numerical flux functions have been pro-
posed that can be used in the type of finite volume discretization described above, most of
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them based on some kind of approximate Riemann solver at the interface between two cells
[1, 4, 5, 8, 12–14, 17, 34, 36, 39–41, 55, 58]. Many of those flux functions are designed
to produce as sharp as possible shock transitions and tangential discontinuities. The Roe
scheme, for example, which has been very popular for hydrodynamic applications, has been
extended to MHD [5, 8, 36, 39]. This scheme tries to minimize the numerical dissipation by
decomposing the differenceUr − Ul present inD(Ul ,Ur ) in the space of the eigenvectors
of the Jacobian and by applying the minimum amount of numerical dissipation to every
characteristic wave separately. There remain, however, several serious problems of local
numerical instability with this scheme, like the carbuncle phenomenon, as for example de-
scribed by Quirk [37]. Probably because of these problems the Roe scheme is not much
used in MHD simulations [26, 32, 45].

Several approaches have been proposed to remedy these problems. First, different types
of non-linear flux functions are being investigated, e.g., Linde’s HLLE-based solver for
MHD [31], which is based on some other form for the numerical dissipation, or solvers
derived from kinetic descriptions [31, 32]. These new flux functions seem to remedy some
of the problems associated with the Roe solver, but more investigation is necessary to see
if they can solve all the stability problems. Second, it is sometimes argued that much of the
problems with finite volume schemes on structured grids are inherent to the dimension-by-
dimension approach, and that many of the pathological instabilities could be removed by
considering truly multi-dimensional schemes on unstructured grids [11]. Third, the failure
of the Roe scheme can probably be related to the fact that it is notentropy-stable[5]. New
entropy-stable schemes formulated in symmetrizedentropy variablesare being developed
[5] and it can be expected that they will lead to more stable numerical schemes. Also in this
area much research is still going on.

This short discussion shows that there are certainly many unsolved issues regarding the
choice of numerical flux functions and numerical schemes in general. In this paper, we
make the “conservative” choice to carry out this grid convergence study using the (local)
Lax–Friedrichs flux function [4, 28, 55], which is given by

F∗(Ul ,Ur ) = F(Ul )+ F(Ur )

2
− (|v∗n| + c f ∗

n

)Ur − Ul

2
, (28)

with |v∗n| + c f ∗
n the largest wave speed in the direction normal to the interface, determined

from the arithmetic average(Ul + Ur )/2 on the interface. The Lax–Friedrichs flux func-
tion applies to all characteristic waves the same numerical dissipation, determined by the
maximum wave speed, which makes it more dissipative than the Roe scheme, for instance,
but much more robust and less prone to local numerical instabilities. The Lax–Friedrichs
flux function is certainly one of the most robust and simple numerical flux functions. For
these reasons its use in MHD applications is often advocated [4, 26, 45, 55]. Stationary
shock profiles are actually captured surprisingly well with the Lax–Friedrichs scheme [4,
55], but tangential discontinuities are smeared out. We show further on that we obtain sat-
isfactory grid convergence results using this numerical flux function. It will be interesting
to test if other flux functions lead to acceptable grid convergence results as well, but such
an extensive comparison is outside the scope of this paper. One of the main purposes of
this paper is to show how grid convergence of MHD codes can be investigated in principle,
and we have made the deliberate choice to illustrate this using the most robust, simple, and
reliable MHD numerical flux function, and not one of the other flux functions which are
more prone to local numerical instabilities.
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5.5. Boundary Conditions

We implement boundary conditions making use of two layers ofghost cells(e.g., [29]).
For the model flows presented, we need three types of boundary conditions. First, at perfectly
conducting walls, the magnetic and velocity fields have to be tangent to the wall. This is
implemented by copying the cell-averaged state of the last physical cell into the first ghost
cell with the magnetic and velocity fields mirrored relative to the boundary segment. The
next-to-last physical cell is copied into the second ghost cell with mirrored magnetic and
velocity fields. Second, at free outflows, where the normal outward plasma velocity is larger
than the normal fast MHD wave speed and all the characteristic information thus propagates
outward of the physical domain, the state variables of the last two physical cells are used
to extrapolate linearly into the two layers of ghost cells. Third, at free inflows, where
the normal inward plasma velocity is larger than the normal fast MHD wave speed and all
the characteristic information thus propagates into the physical domain, we impose the value
on the boundary interface and use this and the state of the last physical cell to calculate the
value in the ghost cells using linear interpolation. Although these boundary conditions are
again based on a simple dimension-by-dimension extrapolation, they turn out to work well
for the model flows to be discussed below, which have only moderately deformed grids. We
have also tested different types of characteristic boundary conditions for the inflows and
outflows not based on ghost cells [5], and flux boundary conditions for the perfect walls, but
for these different implementations of boundary conditions we found essentially the same
grid convergence behavior. Therefore we have chosen to present the results with the more
simple and standard ghost cell approach.

5.6. Grid Convergence

We are now at a point where we can define grid convergence criteria for stationary model
flows, but we first discuss what kind of convergence order we can expect for model flows
simulated with the numerical techniques discussed above.

5.6.1. Formal grid convergence.The basic idea of grid convergence is that for smooth
flow (see below), some measure of the error of the simulation result should decrease as a
function of the resolution with an order which is the formal order of accuracy of the scheme.
Formal Taylor series expansion of the numerical schemes presented above would show that
for a stationary solution

E = ‖U− Ū‖ = c(1/n)p, (29)

with U the exact solution,̄U the numerical solution,E the error in some norm,c a constant,
n the number of cells in a certain direction—where it is understood that the resolution is
changed proportionally in all directions—andp the order of the method (1 or 2 for the
schemes discussed above). On logarithmic axes this would lead to grid convergence curves
which are straight lines with slope 1 or 2:

log(E) = log(c)− p log(n). (30)

All state variable quantities are expected to be calculated with the accuracy of the scheme.
It is important to remark here, however, that the∇ · B quantity (“magnetic flux production
per unit volume”) with discretization given by Eq. (24) is a sum of derivatives of the
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magnetic field state variables, and can thus be expected to converge more slowly than the
state variables, in the worst case with one order less [5, 16]. Probably for this reason, Linde
[31, 36] proposes to measure magnetic flux conservation in a different way. The alternative
quantity

Fi, j =
∑4

k=1 Bk · nklk∑4
k=1 lk

(31)

is a measure of magnetic flux conservation (“flux production per unit length”) which should
converge at least with the same order as the state variables. We investigate how these two
measures of flux conservation behave for the numerical simulation of our five model flows.

The actually observed convergence order for a numerical simulation can be lower than
the formal order of accuracy of the scheme for several reasons. We discuss in short five
possible reasons for convergence degradation. The first two reasons are related to the ana-
lytical properties of fluid flows, viz., to theregularity of flows. The latter three reasons for
convergence degradation seem to be more related to the details of the numerical scheme.

First, when the analytical solution to a flow contains (weak) discontinuities, then the
derivatives in the above-mentioned Taylor expansion do not exist everywhere, which means
that the convergence order result derived using the Taylor expansion is not valid. In general
it can be expected that the convergence order for a numerical scheme will be lower for a
solution containing discontinuities. Leveque [28] gives an example where the convergence
order of an approximation degrades by 0.5 for a solution containing a discontinuity.

Second, near geometrically singular points on boundaries, the analytical solution to the
flow problem is generally not smooth, with similar consequences of convergence-order
degradation [43]. These effects can be reduced by choosing smooth boundaries, as we
have done for all our model flows, but even then the finite grid resolution leads to singular
corners at curved boundaries. The effects of these singularities can be reduced by a careful
geometrical refinement of the grid near the boundary [43]. Barth [5] reports improved
grid convergence if interpolation is done with higher order polynomials at the boundary
interfaces than inside the domain (so-callediso-parametricboundaries), in the context of
finite element methods which allow more flexibility than our finite volume schemes.

Third, the choice of numerical flux function seems to be important for the errors induced
at boundaries. For instance, it is well known that the Roe scheme can lead to the problem of
wall-heatingat perfect wall boundaries [29]. It seems that our choice of the Lax–Friedrichs
flux function in general performs better in such situations, and our grid convergence results
seem generally to be satisfactory. We have thus not adopted the strategy to exclude physical
cells close to the boundaries from our error norm calculations [49, 50], because we think
that this process is somewhat artificial and arbitrary, and because we want to prove grid
convergence of our standard numerical scheme with the boundary treatment included. We
have to admit, however, that the errors are often large not only at discontinuities, but also
at the boundaries.

Fourth, near discontinuities our second-order scheme will switch to first-order accuracy
due to the action of the non-linear limiter. In error norms calculated over the whole simulation
domain, these local first-order errors dominate the second-order errors in smooth parts of
the flow, resulting in convergence degradation to first order.

Fifth, simulations on highly distorted grids, with angles in cells substantially deviating
from 90◦ or cells highly elongated, may show degraded convergence rates [56].
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5.6.2. Practical grid convergence criteria.For the model flows we propose in this arti-
cle, the analytical solution is generally not known. How can we carry out grid convergence
studies then? We do not engage in the use of “self-convergence” criteria [49, 50], because
they do not easily lead to rigorous conclusions.

But even when the analytical solution is not known, we can formulate grid convergence
criteria. In general we can distinguish three classes of grid convergence criteria.

The first class of criteria follows directly from the divergence nature of the steady con-
servation law (Eq. (1) with vanishing time derivative) and the∇ · B constraint. These laws
basically state that the divergence of a flux vanishes. This leads to grid convergence criteria
in two ways.

First, over the whole physical domain, the integrated form of the divergence law shows
that the line integral of the normal flux through the circumference of the physical domain has
to vanish. For instance, in a steady flow the net flux of density (the momentum) through the
boundaries has to vanish, and numerically this net flux has to converge to zero in function of
resolution. This, however, merely checks global conservation and only gives a very global
measure of accuracy, as internal errors can cancel out, and this grid convergence measure
is not further exploited in this article.

Second, when the flux vectors are aligned with a boundary at two opposing boundaries
of the simulation domain, and the boundaries thus formflux tubes, the flux through any line
connecting the two boundaries has to be the same. This can be tested along lines consisting of
cell interfaces. We extensively use this observation to verify if the magnetic and momentum
fluxes through sections of flux tubes are constant along the flux tubes. This leads to a more
local measure of accuracy. Suppose for instance that the boundaries belowj = 1 and above
j = nj are perfect walls; then we can calculate the (magnetic or momentum) flux8i+1/2

through every line formed by interfaces between cells with equal coordinatesi andi + 1,
using the reconstructedUl andUr in the average(Ul + Ur )/2 at every interface, and with
i running from 0 toni . Then an L1 error measure can be defined as

EB,m
8 =

∑i=ni
i=0 abs

(
8i+1/2−8theor

)
ni + 1

, (32)

with 8theor the known theoretical value of the flux, andEB
8 and Em

8 the magnetic and
momentum flux error measure, respectively. Flux conservation criteria such as this have
been used before to investigate the accuracy of MHD simulations in function of resolution
[1, 31, 49, 50].

The second class of grid convergence criteria follows from the rigorously defined char-
acteristic properties of the class of flows under consideration and leads to measures of true
local grid convergence in every cell of the simulated flow. There can be up to four global
invariants for stationary planar field-aligned flow, as follows from the characteristic analy-
sis. The angleθ between the magnetic and the velocity fields has to vanish everywhere. In
the case of uniform inflow, the Riemann invariantsρ/α andhs are global invariants. If the
flow is additionally smooth, then the Riemann invariants is a fourth global invariant. An
L1 error measure for these invariantsI can be defined as

EI =
∑

i, j abs( Ī i, j − I theor)Äi, j∑
i, j Äi, j

, (33)
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with I theor the known theoretical value of the invariant. Note that we actually calculate the
difference between the cell-averaged numerically calculated values of the invariant and the
cell average of the theoretical value of the invariant (which, of course, is the invariant itself).
Global grid convergence criteria based on characteristic invariants have to our knowledge
not often been used to investigate the accuracy of 2D MHD simulation results in function of
resolution. Thes andhs quantities keep their invariant properties in stationary Euler flow,
so this type of grid convergence study can also be carried out for that case, as is well known.
Finally, we should mention that∇ · B should vanish in theory for every MHD flow, so this
can easily be tested using the same expression to calculate the error.

The third class of grid convergence criteria follows from the RH jump relations. If suffi-
cient information is available in terms of imposed upstream flow conditions and geometrical
constraints, then the remaining unknown values can be calculated from Eq. (6) with high
accuracy, and in some cases analytical solutions can be found. These values can then be
compared with the values resulting from full 2D numerical simulations of the flow, and grid
convergence can be investigated.

In practice, we measure the simulation error using the above given expressionsE as a
function of the number of grid cells in a certain directionn and determine the numerical
convergence order by a least-squares fit of the log E-logn curve with generally four data
points.

6. GRID CONVERGENCE STUDY OF MHD MODEL FLOWS

In this section we discuss numerical simulation aspects of the model flows presented
in Section 3 and the non-field-aligned flow presented in Section 4, and we present grid
convergence results obtained with the criteria discussed in Section 5.

6.1. Numerical Simulation Aspects

The steady state simulation results shown in Figs. 2–6 are obtained via time-accurate
relaxation starting from uniform initial states. Figure 9 shows the convergence of the loga-
rithm of the density residual towards a steady state solution as a function of the number of
time-steps. We can observe that the steady state convergence of our numerical scheme is
extremely well behaved. For all simulations we obtain convergence up to machine accuracy
using both the first-order scheme (solid) and the second-order scheme (dash-dotted). The
number of time-steps needed to obtain convergence is mostly similar for the first- and the
second-order schemes. We used the same CFL number for the first- and the second-order
scheme. The computational cost per time-step is, however, about three times higher for the
second-order scheme. The number of time-steps is much higher for the bow shock flow than
for the other flows, because of the low speeds in the elliptic region near the stagnation point.

Figure 10 shows the simulation grids used for the numerical results presented in this paper.
The grids are nearly uniform and the grid cells are mostly quite regular, except perhaps for
some strongly deformed cells in the bow shock grid. For the cylindrical expansion problem
and the rotating outflow problem the grid convergence has been studied making use of
simulations on 40× 40, 50× 50, 60× 60, and 70× 70 grids. The expanding tube problem
has been simulated on 30× 50, 45× 75, 60× 100, and 75× 125 grids, and the wedge
problem on 40× 80, 60× 120, 80× 160, and 100× 200 grids. Grid convergence for the
bow shock flow has been studied making use of simulations on 20× 20, 40× 40, 60× 60,
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FIG. 9. Convergence of the logarithm of the density residual towards a steady state, in function of the number
of time-steps. First-order (solid) and second-order (dash-dotted) numerical schemes.

and 80× 80 grids, and the nozzle simulations were performed on 48× 16, 72× 24, 96×
32, and 120× 40 grids.

6.2. Grid Convergence Results for Flux Conservation

The cylindrical expansion flow, the expanding tube flow, the wedge flow, and the nozzle
flow all have opposed simulation domain boundaries which are ideal walls and thus define

FIG. 10. Finite-volume simulation grids. Successive conformal refinements of these grids have been used for
the grid convergence study.



54 DE STERCK ET AL.

FIG. 11. Grid convergence behavior of the magnetic and momentum flux conservation for five test cases.
The first row shows the normalized magnetic flux through vertical or radial sections in function of the vertical
or radial coordinate for four different grid resolutions, both for the first-order scheme (dotted) and the second-
order scheme (dashed). The second row shows the normalized momentum flux profiles for the first-order scheme
(dash-dotted) and the second-order scheme (dash-dot-dot-dotted). The third row shows the 10 logarithm of the L1
norm of the errors of the magnetic flux (triangles, first-order dotted and second-order dashed) and momentum flux
(asterisks, first-order dash-dotted and second-order dash-dot-dot-dotted), in function of the grid resolution (base
10 logarithms ofn, the number of grid cells in thei direction).

a flux tube. We can study grid convergence of the magnetic and momentum flux through
these flux tubes. The rotating outflow problem described in Section 4 has the property of
radial conservation of magnetic and momentum flux. Figure 11 shows the grid convergence
behavior of the fluxes for these five test cases.

The first row of the figure shows the normalized magnetic flux through vertical or radial
sections in function of the vertical or radial coordinate. Every panel contains eight curves,
four for the first-order scheme (dotted) for increasing grid resolution and four for the second-
order scheme (dashed). We see that in all cases the normalized magnetic flux approaches
the value of unity nicely and that the flux conservation is much more accurate for the
second-order results than for the first-order results.

The second row of the figure shows the normalized momentum flux through the vertical
or radial sections. Every panel again contains eight curves, four for the first-order scheme
(dash-dotted) for increasing grid resolution, and four for the second-order scheme (dash-
dot-dot-dotted). We again see that in all cases the normalized momentum flux approaches
the value of unity nicely and that the flux conservation is much more accurate for the
second-order results than for the first-order results.

The shape of the momentum flux curves is generally similar to the shape of the magnetic
flux curves, and this is no surprise for field-aligned flow. Only for the non-field-aligned
rotating outflow (Fig. 11e) are the curves markedly different in shape.

The third row shows the base-10 logarithms of the L1 norms of the errors of the magnetic
and momentum flux curves, as functions of the grid resolution (base-10 logarithms ofn, the
number of grid cells in thei direction). The magnetic flux conservation for the first-order
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TABLE I

Grid Convergence Order of Several Invariant Quantities

Expansion Tube Wedge Bow shock Nozzle Rotating

First order
Magnetic flux −0.98 −1.05 −1.04 −1.08 −2.30
Momentum flux −0.93 −1.04 −1.08 −1.01 −0.72
s −0.93 −0.87 −0.81
hs −0.82 −1.04 −1.15 −0.86 −0.91 −0.58∗

ρ/α −0.87 −0.99 −0.97 −0.72 −0.70 −0.82∗

θ −0.99 −1.06 −0.60 −0.73 −0.84∗

∇ · B −0.98 −0.92 −0.79 −0.59 −0.90 −1.33
F =∑(Bni1l i )/

∑
1l i −1.98 −1.92 −1.79 −1.55 −1.90 −2.36

Second order
Magnetic flux −2.06 −1.90 −1.03 −1.04 −2.10
Momentum flux −2.06 −1.86 −1.02 −1.07 −1.85
s −1.96 −1.74 −1.28
hs −1.91 −1.10 −1.01 −0.90 −0.87 −1.92∗

ρ/α −2.07 −1.44 −0.82 −1.07 −0.97 −1.71∗

θ −1.78 −0.99 −0.85 −1.01 −1.89∗

∇ · B −1.96 −1.38 −0.22 −0.55 −0.42 −1.79
F =∑(Bni1l i )/

∑
1l i −2.95 −2.39 −1.22 −1.53 −1.43 −2.83

Note.The fitted slope of the base 10 logarithms of the L1 norm of the error in function of the
10 logarithms of the number of grid cells in thei direction is shown. For the values marked with
an asterisk, the rotating outflow grid convergence is measured using slightly different invariant
quantities than for the other flows. The results show that the presence of discontinuities (in the
wedge, bow shock, and nozzle flows) consistently degrades the convergence for the second-order
numerical scheme to first order due to the action of the nonlinear limiter. Analytical singularities
or numerical inaccuracies at boundaries and grid distortion may further degrade the convergence.
Such additional convergence degradation can be observed for the values that areitalicized. Overall,
a satisfactorily consistent grid convergence behavior is obtained.

scheme is indicated by a dotted line with triangles and by a dashed line with triangles for
the second-order scheme. The momentum flux conservation for the first-order scheme is
indicated by a dash-dotted line with asterisks and by a dash-dot-dot-dotted line with asterisks
for the second-order scheme. We observe that in all cases the convergence curves follow
a straight line, which indicates convergence with a well-defined order. The fitted slope
coefficients for these lines are presented in Table 1. The cylindrical expansion flow and the
expanding tube flow are both smooth flows. The fluxes both converge with the expected
slope close to−1 for the first-order scheme and close to−2 for the second-order scheme. The
wedge flow contains a strong discontinuity, and due to the action of the nonlinear limiter, the
second-order scheme converges only with a slope close to−1, like the first-order scheme.
The second-order results are more accurate, however. The nozzle flow contains shocks as
well and also shows first-order convergence both for the first- and the second-order scheme.
The rotating outflow problem is smooth and shows the expected second-order convergence
for the second-order scheme. For the first-order scheme, the momentum flux converges with
an order which is lower than first order, but, remarkably, the magnetic flux converges with
slope−2.3.

The main conclusion to be drawn from this grid convergence study for magnetic and
momentum flux conservation is that the experimentally obtained grid convergence orders
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are very close to the theoretically expected orders. The numerical schemes seem thus to
behave very well. The excellent conservation of magnetic flux indicates strongly that the
Powell source term approach produces valid results.

6.3. Grid Convergence Results for Global Invariants

Table 1 contains the fitted slopes of the grid convergence curves for the global invariants
entropys, stagnation enthalpyhs, ρ/α, andθ . The entropys is not a global invariant when
shocks are present. In the case of the rotating outflow, the invariants are entropys, Bernoulli
functionh, angular momentumL, and electric fieldEz, as discussed in Section 4. Note that
no error slope has been given for the grid convergence of the angleθ between the magnetic
and velocity field for the case of the cylindrical expansion. In the initial condition the fields
are aligned perfectly up to the machine error induced by a rotation, and this property is con-
served throughout the time relaxation as the flow is perfectly radial. These rotational machine
errors are very small—much smaller than the errors in the other global RIs—and of course
do not depend on resolution, so that for this case grid convergence ofθ is not relevant. The
first-order schemeproduces grid convergence orders which are generally close to the theo-
retically expected slope of−1. For some model problems and for some invariants, the con-
vergence order is smaller than 1. In this case the slopes are shown initalics, where we have
(arbitrarily) put the limit of expected behavior at 80%. Convergence degradation seems to be
most severe for the bow shock and nozzle flows, and detailed study of the simulation results
shows that this can mainly be attributed to the interaction of the shocks with the boundaries.
Overall, however, the results are quite consistent with the order of the scheme. For the
smooth flow problems, thesecond-order schemeproduces grid convergence orders which
are generally close to the theoretically expected slope of−2, except for the values in italics.
For the expanding tube flow, careful study shows again that convergence degradation can
be attributed to interaction with the (not perfectly smooth) boundary. The model problems
with shocks show consistent first-order convergence behavior, again due to the limiter.

Table 1 also shows grid convergence slopes for∇ · B and Linde’s quantityF (Eq. (31)).
For the first-order scheme, we see that∇ · B converges with an order not too far from
the expected convergence order for state variables, although it is a quantity obtainable
from the magnetic field through derivation. The reason may be that the numerical scheme
treats∇ · B/ρ as a passive scalar [36]. Linde’s quantityF indeed converges one order
faster than∇ · B. The second-order scheme produces satisfactory grid convergence behav-
ior for the∇ · B-related quantities as well, except for the wedge, the bow shock and the
nozzle. Again, the convergence degradation there can be traced back to errors at (not per-
fectly smooth) boundaries and shock-boundary interactions. The order we obtain for∇ · B
convergence for our broad set of model problems is similar or higher than the order of
convergence reported by Linde [31] and Barth [5] for smaller sets of model problems.

To conclude this section about the grid convergence study for global invariants, we can say
that the experimentally obtained grid convergence behavior is satisfactorily consistent with
the theoretically expected behavior. Some convergence degradation can be observed at (not
perfectly smooth) boundaries and shock–boundary interactions, but this is not unexpected,
given the discussion on convergence degradation in Section 5.6.1. The fluxes discussed in
the previous section, which can be considered as one-time-integrated quantities, seem to be
less sensitive to boundary effects. The results discussed in this section thus confirm again
the validity of the numerical approach and the source term technique for controlling∇ · B.
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FIG. 12. The wedge flow. Grid convergence of the Rankine–Hugoniot relations. Ten logarithm of the relative
errors of the downstream density and velocity at (x = 0.96, y = 0.87), in function of the grid resolution. The
density (first-order scheme, dotted, triangles, and second-order scheme, dashed, triangles) does converge, but not
with a well-defined order. The velocity converges witha = −0.79 (first-order scheme, dash-dotted, asterisks) and
with a = −0.80 (second-order scheme, dash-dot-dot-dotted, asterisks).

6.4. Grid Convergence Results for Rankine–Hugoniot Relations

For the wedge flow, the inflow quantities and the wedge angle completely determine the
angle and the downstream quantities of the fast MHD shock. The algebraic equations of
the MHD RH relations (6) can be solved numerically up to a very high accuracy, using
for instance standard iterative methods provided in software for symbolical calculations.
Following such a procedure, we have obtained the (nearly) exact downstream density and
velocity field magnitude to beρ = 2.00060295 andv = 7.04956575. In Fig. 12 we inves-
tigate grid convergence of the Rankine–Hugoniot relations. The base-10 logarithms of the
relative errors of the downstream density and velocity at (x = 0.96,y = 0.87) are shown, as
functions of the grid resolution. First of all, we can say that our numerical scheme calculates
a solution which closely matches the RH relations. The errors are 1% and lower. The velocity
seems to converge linearly with a slope close to the theoretically predicted one, but the den-
sity seems to behave more erratically. Figure 13a indicates a reason for this. Finite-volume
schemes have the well-known defect that they produce grid-related entropy oscillations in
a direction parallel to a shock, and these entropy errors are advected downstream along
the streamlines. This generates small ripples in the downstream solution, which should be
uniform. The value of the downstream density, for instance, thus depends on the location
and on the grid resolution, and this degrades pointwise convergence. The entropy oscil-
lations are quite small with the Lax–Friedrichs scheme, and would be much larger when
the Roe scheme was used. Due to the inherent defect of finite-volume schemes, we cannot
prove proper grid convergence of the RH relations, but we can see that the RH relations
are generally well satisfied and that the tendency is that they are better satisfied on finer
grids. It will be interesting to see [11] if new MHD schemes based on multi-dimensional
approaches will reduce or eliminate the downstream entropy contamination typical of finite
volume approaches.
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FIG. 13. The wedge flow. (a) Entropy contours (15 contours betweens= 2.43 ands= 2.45, thin) and
streamlines (thick) in a small region which contains the shock. Small errors in the entropy generated at the shock
are convected away downstream parallel to the streamlines, generating small ripples in the downstream region
which should be uniform. (b) Divergence of the B field in a small region containing the shock(x ∈ [0.6, 0.8], y ∈
[0.55, 0.75]). ∇ · B is strongly non-zero in a small layer around the shock. Negative and positive∇ · B peaks
cancel each other out, such that on a slightly more global scale, magnetic monopoles are not present.∇ · B reaches
values from−3.36 to 6.76 in the region shown.

It is interesting here to investigate more closely what happens with the∇ · B constraint
at a strong discontinuity. Figure 13b shows the divergence of theB field in a small region
containing the shock(x ∈ [0.6, 0.8], y ∈ [0.55, 0.75]).∇ · B is strongly non-zero in a small
layer around the shock.∇ · B reaches values from−3.36 to 6.76 in the region shown. Ac-
tually, an upper bound for∇ · B can be given by∇ · B = |1B|/1x, with |1B| the jump in
the magnitude of the magnetic field vector across the shock, and1x a 1D measure of grid
spacing. As in the MUSCL schemes discussed above, a stationary shock is generally cap-
tured with a constant number of intermediate cells which does not depend on the resolution,
and as|1B| is independent of the resolution, this means that∇ · B peaks near shocks will
grow without bounds as 1/1x in function of the grid resolution. As second-order schemes
produce sharper shocks, the∇ · B peaks will be larger when a second-order scheme is used
than when a first-order scheme is used, and our simulation results clearly confirm that (not
shown). The Roe scheme, which produces sharper shocks than the Lax–Friedrichs scheme,
also produces larger∇ · B peaks at shocks. The Powell source term approach takes these
∇ · B peaks into account consistently and the source term precisely neutralizes the dynam-
ical effect of the∇ · B peaks. It is important to note that the exact location and magnitude
of the∇ · B peaks change when a different discretization is chosen for∇ · B, and even in
numerical schemes which guarantee∇ · B to vanish with machine precision in a certain
discretization, it is clear that∇ · B peaks are present as soon as one looks at∇ · B in a differ-
ent discretization.∇ · B peaks are an unavoidable consequence of our attempt to represent
discontinuities on grids with a finite spatial resolution. All this seems to be quite worrisome,
given that magnetic monopoles do not exist in nature, but in practice correct results seem
to be produced by numerical schemes on discrete grids. How is this possible? As noted by
Linde [31], discretization of∇ · B near shocks has a “telescoping” property, which can be
described as follows. Negative and positive∇ · B peaks cancel each other out, such that
on a slightly more global scale, magnetic monopoles are not present. This alternation of
positive and negative∇ · B peaks can be seen clearly on Fig. 13. This is not yet a proof that
the Powell approach produces valid results. Convincing support for the validity of Powell’s
source term approach is given by the results of our grid convergence studies. Table 1 shows
that the measure of flux conservationF converges faster than the state variables, and thus
faster than predicted. Figure 12 shows that the numerical solution satisfies the MHD RH



MHD FLOWS WITH SHOCKS 59

FIG. 14. The bow shock flow. Grid convergence of the stagnation point values. Ten logarithm of the relative
errors of the stagnation point density and pressure, in function of the grid resolution. The density converges with
a = −0.70 (first-order scheme, dotted, triangles), and witha = −1.01 (second-order scheme, dashed, triangles).
The pressure converges witha = −0.82 (first-order scheme, dash-dotted, asterisks) and witha = −0.52 (second-
order scheme, dash-dot-dot-dotted, asterisks).

relations up to high precision. Most convincingly, Fig. 11 shows clearly that the magnetic
flux through flux tubes which may contain fast shocks is conserved and that flux conservation
converges with the theoretically predicted order.

For the bow shock flow, we can investigate grid convergence of the solution at the
stagnation point. On the stagnation streamline, the RH relations lead to an analytical solution
for the state variables downstream of the shock, and using the conservation ofs andhs on
the stagnation streamline, the exact analytical solution of the stagnation point quantities
in terms of the upstream flow quantities can be obtained [35]. For the inflow values of
our bow shock model problemρstag= 3.61528 andpstag= 3.61528. Figure 14 shows grid
convergence of the stagnation point values. Although the grid convergence orders are not
all close to the theoretical value of one, there is a clear trend of grid convergence to the
correct values, and this is a remarkable result, given the well-known problems of many
finite-volume schemes with “wall-heating” at perfect walls [29].

7. SUMMARY AND CONCLUSION

In this paper we have started out with a brief presentation of the theory of stationary
characteristics for the class of 2D planar field-aligned MHD flows. We have presented five
model flows of increasing complexity belonging to this class, and we have investigated the
physical properties of these flows using characteristic theory. We have used characteristic
theory to formulate grid convergence criteria for flows belonging to this class, and we have
shown grid convergence for the numerical simulation of the five field-aligned model flows
and for one non-field-aligned model flow with astandardhigh-resolution finite volume
numerical MHD code on structured body-fitted grids.

We did not always obtain grid convergence orders completely consistent with theoret-
ical expectations. Such degradation of convergence can mostly be attributed to analytical
singularities or numerical inaccuracies at boundaries, to complex behavior at discontinu-
ities, and to the distortion of the grid. However, in general wedid obtain satisfactory grid
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convergence for most properties. The conservation of magnetic and momentum flux in flux
tubes behaved especially well (see Table 1). All these results give us strong indications that
we calculate the physically correct solution to the flow problems and that we improve the
accuracy by refining the grid. It is important to establish such formal accuracy tests for
MHD simulations, and this is certainly not trivial given the lack of analytical solutions for
2D MHD problems. More advanced schemes and boundary treatment may lead to more
completely consistent grid convergence results, and throughout this paper we have indicated
in which direction improvement can be expected.

We have investigated by formal grid convergence studies of magnetic flux conservation
and other flow quantities whether the Powell source term approach to control the∇ · B
constraint leads to correct results for this class of flows. Our grid convergence results show
clearly that this method leads to correct solutions for the transonic problems we consid-
ered, although it remains difficult to grasp all the subtle details of how this correct result
is obtained. It may also be that for some problems, for which the conservation of magnetic
flux up to very high accuracy is crucial, the source term technique would turn out to be
insufficient. Recently Toth [55] has given an example of a time-dependent flow (a strong
Riemann problem) for which the source term approach does not seem to work satisfactorily.

Although the model problems presented in this article exhibit a variety of flow features,
they all belong to the sub-class of stationary planar 2D MHD flows. Stationary flow has
important applications, and in this paper we have taken a first step to prove grid convergence
for model problems belonging to this important sub-class of flows. It would certainly be
useful to develop more general test problems allowing for grid convergence studies, which,
for instance, would also investigate the accuracy of time integration. Self-similar MHD
flows are probably good candidates for this. Fully 3D test problems should be considered as
well. In 3D, when the magnetic field is not aligned to the flow, many of the invariants used
in this paper to prove grid convergence cease to be invariant [46], so it is to be expected that
it will be more difficult to formulate 3D MHD model flow problems which allow for grid
convergence study. For the time being, however, we can reassure ourselves by realizing that
many 3D algorithms are straight extensions of their 2D counterparts, so it can be expected
that the 3D algorithms perform similarly to the 2D algorithms in terms of accuracy.
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